
MA40050: Numerical Optimisation & Large–Scale Systems
Model Solutions to Problem Sheet 2

1. (a) Since x∗ is a local minimiser, there exists an r > 0 such that

0 ≤ f(x∗ + h)− f(x∗) = ∇f(x∗) · h+ o(|h|), for all h ∈ Br(0).

Hence,

0 ≤ lim
|h|→0

(
1

|h|
∇f(x∗) · h+

o(|h|)
|h|

)
= ∇f(x∗) · ĥ

where ĥ = h/|h| . Since, h ∈ Br(0) was arbitrary, we also have 0 ≤ ∇f(x∗) · (−ĥ) ,
which together with the above inequality implies

∇f(x∗) · ĥ = 0, for all ĥ ∈ RN with |ĥ| = 1.

This is equivalent to ∇f(x∗) = 0 .

(b) Since f(x∗ + h) ≥ f(x∗) , for all h ∈ Br(0) , and ∇f(x∗) · h = 0 , we have

0 ≤ f(x∗ + h)− f(x∗)−∇f(x∗) · h = 1
2
hT∇2f(x∗)h+ o(|h|2), for all h ∈ Br(0),

and so
0 ≤ lim

|h|→0

(
1

2|h|2
hT∇2f(x∗)h+

o(|h|2)
|h|2

)
= 1

2
ĥT∇2f(x∗)ĥ

Since h ∈ Br(0) was arbitrary and the inequality also holds for any multiple of ĥ ,
it follows that ∇2f(x∗) ≥ 0 (i.e. ∇2f(x∗) is positive semidefinite).

2. (a)

f(x+ h) = 1
2
(x+ h)TA(x+ h)− bT (x+ h) + c

= 1
2

[
xTAx+ 2xTAh+ hTAh

]
− bTx− bTh+ c

= f(x) + (Ax− b)Th+ 1
2
hTAh+ 0.

Hence, f ∈ C2(RN) , ∇f(x) = Ax− b and ∇2f(x) = A .

(b) Since A is spd, it follows from the Linear Algebra handout that A−1 exists and
thus x∗ = A−1b is the only critical point. Since ∇2f(x) = A > 0 it follows from
Proposition 2.8 that x∗ is a strict local minimum.

To show that x∗ is a global minimum, let 0 6= h ∈ RN be arbitrary. Then

f(x∗ + h)− f(x∗) = (Ax∗ − b)Th+ 1
2
hTAh = 1

2
hTAh > 0.

So x∗ is a global minimiser.
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3. The root is x∗ = 0.567143290409784 .

(a) Fixpoint iteration: xk+1 = G(xk) = exp(−xk) . Thus

k xk |xk − x∗| |xk − x∗|/|xk−1 − x∗|

0 1 0.43286

1 0.367879441171442 0.19926 0.46034

2 0.692200627555346 0.12505 0.62757

3 0.500473500563637 0.06667 0.53315

4 0.606243535085597 0.03910 0.58647

5 0.545395785975027 0.02175 0.55627

6 0.579612335503379 0.01247 0.57333

7 0.560115461361089 0.00703 0.56375

8 0.571143115080177 0.00400 0.56899

9 0.564879347391050 0.00226 0.56500

10 0.568428725029061 0.00129 0.57080

Hence, xk → x∗ q-linearly with q-factor x∗ .

(b) Newton iteration: xk+1 = xk −
xk − exp(−xk)
1 + exp(−xk)

. Thus

k xk |xk − x∗| |xk − x∗|/|xk−1 − x∗|2

0 1 4.32857e-1

1 0.537882842739990 2.92604e-2 0.156166

2 0.566986991405413 1.56299e-4 0.182556

3 0.567143285989123 4.42066e-9 0.180957

4 0.567143290409784 < 1.0e− 15

Hence, xk → x∗ q-quadratically, much faster than the fixpoint iteration.

4. (a) F (x) = xk , k ≥ 2 , is differentiable on all of RN and F ′(x) = kxk−1 6= 0 , for all
x 6= 0 .

Hence, if x0 6= 0 , then

xn+1 = xn −
F (xn)

F ′(xn)
= xn −

xkn
kxk−1n

=

(
1− 1

k

)
xn

is well-defined and converges to 0 q-linearly with q-factor 1− 1
k

.

(The convergence is not q-quadratic and becomes worse as k gets larger.)
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(b) Choose F (x) = arctan(x) :

-10 -5 0 5 10
-3

-2

-1

0

1

2

3

To create a cyclic behaviour of the Newton iterates, we find an x0 6= 0 such that

−x0 = x1 = x0 −
F (x0)

F ′(x0)
. (1)

If such an x0 exists, then x2n = x0 and x2n+1 = −x0 , for all n ≥ 0 .

(1) ⇔ 2x0F
′(x0) = F (x0) ⇔ ϕ(x0) :=

2x0
1 + x20

= arctan(x0)

Since ϕ(0) = 0 and arctan(0) = 0 and

ϕ′(0) =
2

1 + x20
− 4x0

(1 + x20)
2

∣∣∣∣
x0=0

= 2 and arctan′(0) = 1,

there exists an x′ > 0 with ϕ(x′) > arctan(x′) .

However, we also have limx→∞ ϕ(x) = 0 and limx→∞ arctan(x) = π
2

. Hence, there
exists a x′′ > x′ with ϕ(x′′) < arctan(x′′) .

Since ϕ and arctan are continuous, there exists x0 ∈ (x′, x′′) where (1) holds.

5. Model code is available on the website.

The minimum is x∗ = (1, 1)T . Here is a table of results obtained with the model code
(rounded to 5 significant figures):
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n xn |xn − x∗| |xn − x∗|/|xn−1 − x∗|2

0 (−2, 2)T 3.1623

1 (−1.9925, 3.9701)T 4.2162 0.421614

2 (0.96687,−7.8232)T 8.8232 0.49635

3 (0.96689, 0.93488)T 7.3054e-2 9.3841e-4

4 (1.0, 0.99890)T 1.0962e-3 0.20540

5 (1.0, 1.0)T 9.5122e-10 7.9159e-4

The convergence is very erratic at first and then appears to be quadratic as predicted.

Note that σ(∇2f(x∗)) = {0.39936, 1001.6} and so ∇2f(x∗) > 0 and x∗ is a strict min-
imiser.
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