MA40050: Numerical Optimisation & Large—Scale Systems
Model Solutions to Problem Sheet 2

(a) Since z, is a local minimiser, there exists an r > 0 such that
0 < f(ze+h) — f(z) =V f(z.)-h+o(h]), forall he B,(0).

Hence,
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|h|—0

ey () A WP
TV ,h,) V() h

where h = h/|h|. Since, h € B,(0) was arbitrary, we also have 0 < Vf(z,)-(—h),
which together with the above inequality implies

Vf(z,) -h=0, forall heRY with |h|=1.

This is equivalentto V f(z,) =0.

(b) Since f(z.+h)> f(z.),forall h € B.(0),and Vf(z,)-h =0, we have
0< f(xe+h)— flze) = Vf(z) - h=L0"V?f(z.)h+ o(|h|*), forall he B,(0),
and so

o(|hf*)
|h[?

1

T2
2|h|2h Vaf(x)h +

0< lim(

" |h|—0

) = % iLTV2f(ZL‘*)iL

Since h € B,(0) was arbitrary and the inequality also holds for any multiple of #,
it follows that V2f(z,) > 0 (i.e. V?f(z,) is positive semidefinite).

flx+h)=3(x+h)"Az+h)—b"(x+h)+c
L[a" Az + 22T A+ BT AR] —bT2 — bTh+ ¢
= f(z)+ (Az = b)"h + LnT AR + 0.

Hence, f € C?*(RY), Vf(z) = Ax —b and V?f(z) = A.

(b) Since A is spd, it follows from the Linear Algebra handout that A~! exists and
thus z. = A~'b is the only critical point. Since V2f(z) = A > 0 it follows from
Proposition 2.8 that =z, is a strict local minimum.

To show that z, is a global minimum, let 0 # h € RY be arbitrary. Then
f(@e+h) = fz,) = (Az, — b)"h + $h" Ah = 1h" AR > 0.

So =z, is a global minimiser.



3. Therootis z, = 0.567143290409784 .

(a) Fixpoint iteration: z*+! = G(2*) = exp(—2*). Thus

k zk |ob — x| |2F — 2| /|2 — 2,
0 1 0.43286
1 10.367879441171442 0.19926 0.46034
2 | 0.692200627555346 0.12505 0.62757
3 | 0.500473500563637 0.06667 0.53315
4 | 0.606243535085597 0.03910 0.58647
5 | 0.545395785975027 0.02175 0.55627
6 | 0.579612335503379 0.01247 0.57333
7 | 0.560115461361089 0.00703 0.56375
8 | 0.571143115080177 0.00400 0.56899
9 | 0.564879347391050 0.00226 0.56500
10 | 0.568428725029061 0.00129 0.57080

Hence, z* — . g-linearly with g-factor z, .

(b) Newton iteration: xp,1 = xp —

Tk

xp — exp(—xg)

. Thus
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1
0.537882842739990
0.566986991405413
0.567143285989123
0.567143290409784

1+ exp(—)
i — 2] o — 2l /| — 2]?
4.32857e-1
2.92604e-2 0.156166
1.56299¢e-4 0.182556
4.42066e-9 0.180957
< 1.0e—15

Hence, z* — x, g-quadratically, much faster than the fixpoint iteration.

4. (a) F(x) = 2%, k > 2, is differentiable on all of RY and F'(z) = ka*=! # 0, for all
x#£0.

Hence, if 2y # 0, then

n

F(xn)
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is well-defined and converges to 0 g-linearly with g-factor 1 — ;.

(The convergence is not g-quadratic and becomes worse as k gets larger.)



(b) Choose F(x) = arctan(x) :

To create a cyclic behaviour of the Newton iterates, we find an z, # 0 such that

_ F(x)
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If such an z( exists, then zs, = xq and x9,,1 = —z¢, forall n > 0.

2
(1) & 2x0F'(x9) = F(zg) <  ¢(xg) := &2 = arctan(x)
1+ x§

Since ¢(0) =0 and arctan(0) =0 and
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"(0) = — =2 and arctan’(0) =1
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xro=0
there exists an 2’ > 0 with ¢(2’) > arctan(z’).

However, we also have lim,_,., ¢(z) = 0 and lim,_,. arctan(x) = 7 . Hence, there
exists a 2" > 2’ with ¢(2”) < arctan(z”) .

Since ¢ and arctan are continuous, there exists z, € («/,2”) where (1) holds.
5. Model code is available on the website.

The minimum is z, = (1,1)T. Here is a table of results obtained with the model code
(rounded to 5 significant figures):



n Ty e N - E S
0 (=2,2)7 3.1623

1] (~1.9925,3.9700)T  4.2162 0.421614

2 | (0.96687, —7.8232)T 8.8232 0.49635

3| (0.96689,0.93488)7  7.3054e-2 9.3841e-4

4 (1.0,0.99890) 1.0962e-3 0.20540

5 (1.0,1.0)T 9.5122e-10 7.9159e-4

The convergence is very erratic at first and then appears to be quadratic as predicted.

Note that o(V?f(z.)) = {0.39936,1001.6} and so V?f(z.) > 0 and =z, is a strict min-
imiser.



