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1.

2.

Let f:RY — R be convex and let z, be a local minimiser of f .

Assume, for contradiction, that z, is not a global minimiser. Then

3z € RY : f(2) < f(x.).

Let x = az. + (1 —a)z. Since f is convex,

flx) =af(z.) + (1 —a)f(z)
> af(z.) + (1 —a)f(z)
> flaz, + (1 —«a)z2)

f(z), Vael0,1]

and so z, is not a local minimiser of f which is a contradiction. Hence, =z, is a global
minimiser of f.

(a) Clearly the result holds for k£ = 0. Let us assume g, = (0,1 — 57%)T,
Since f(z) = (x1 — x2)® + 2(x1 — x9) + 27,

4ZL’1 - 2(1’2 — 1)
Vf(x) =
—2x1 + 2(xg — 1)
and so Vf(xy) = 57%(2,—-2)T. Thus, the direction of steepest descent is so;, =
(—1,1)T (only the direction of s; matters), and so

—
Tok+1 = Tk + ASo =
a+1—57F

where « is chosen such that it minimises
d(a) = f(rors1) = (20 — 1+ 5"“)2 +2(—20— 1+ 5—k) Lol

We have ¢'(a) = —4(—2a—1+57%)—4+2a = 10a—4/5F and ¢"(a) = 10. Hence,
the unique critical point of ¢ is «a, = 2/5%*! and it is a minimum. Thus,

_2/5k+1
Tog4+1 = . (1)
1— 3/5k+1
Similarly,

—-8+6 1 a — 2/5F1
Vf(xops1) = 5= (kD) y Sopy1 = and zopio = :
4—6 1 a+1—3/5k1
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3.

4.

Here,

$(a) = frarya) = (=145 )2 4 2(—1 4 57 FV) 4 (—2/5M1 1 a)?,
#'(a) = 2(—2/5"1+a) and ¢"(a) = 2. Hence, the unique minimum is «, = 2/5%*!
and xg. = (0,1 — 5-*+)T which completes the induction step.

The sequence clearly converges to the local minimum z, = (0,1)". Here is a
sketch of the iterates:
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(b) Since
|ZL’2k — .73*| = 5_k and |l’2k+1 — TL’*| =V 13/5k+1
we have
|Tokto — T _ 1 d | Tokts — T _ 1
|Top — . ) |Topt1 — x| D

and we can choose ¢, = C5%/2. To find a suitable C, let us pick the smallest
value of C' such that

1—’$U—$*‘<§0 C and \/_/5—’$1—$*|<51 C5™ 1/2

This implies C = /13/5 and so &, = 4/13/5*t! which converges g-linearly to 0
with g-factor 5-'/2. Hence, z; — x, r-linearly with r-factor 57%/2.

Model code is available on the course website.

As predicted Algorithm 4.2 converges extremely poorly, especially for the more difficult
starting point =, = (—1.2,1)7. More than 10000 iterations are necessary to achieve
a tolerance of 1071 for 0, = 10~ (for both starting points) and ~ 900 iterations for
0.4 = 0.37 for the easier starting point z, = (1.2,1.2)7, which is close to the solution
and ~ 2000 iterations for the more difficult starting point =, = (—1.2,1)” which is further
away from the exact solution.

(a) First note that Vf(z,) = DR(z,)T R(z,) = 0. Furthermore, since

V2f(x,) = DR(z,)" DR(x,) v2R (z,) = DR(x,)" DR(x,)
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and DR(x,) was assumed to be of full rank, we have

WIV2 f(2)h = (DR(z.)h)T (DR(z.)h) = yTy >0, forall h#0,
=: y#0

and so V2f(z,) >0 and z, is a strict local minimiser of f.

Since V%f(z.) = DR(z.)"DR(z.) > 0, it follows as usual from Lemma 2.1 that
R > 0:Vz, € Bg(z,): DR(x,)" DR(x,) invertible and z,,,; well defined.
Suppose z,, € Bg(z,). Since R(z,) =0,

Tpil — T = Tp — T — (DR(In)TDR(Z‘n))_I DR(x,)' R(x,) (2)
= (DR(z,)"DR(z,)) " DR(xn)T<R(x*) ~ R(xy) — DR() (s — mn)>

As in the Proof of Theorem 3.2, we can use the IMVT (Theorem 2.5) to show that
1
R(z.)—R(zp)—DR(z,)(xe—x,) = [/ (DR(zp, + t(xy — x,)) — DR(x,,)) dt] (Tu—xp)
0

and hence (using the Lipschitz continuity of DR near z, with constant L > 0)

1
[R(z+) = R(xn) = DR(2n) (2 — 20| < / IDR(zn + t(zx = 20)) = DR(n)|| At [zn — 2]

0
1
< L/ it — 1| dt |z, — z.* = £|azn —z %

0 2

Using this bound together with (2), we get

o =] £ 5 || (DR DR(@) | | DRG@ [l — 2. < Claw =2, @)

where the constant C' depends on L, on max,.z, . [[DR(z)||, and — again
through Lemma 2.1 —on |[(DR(x.)" DR(z.))™!| -

Now, by choosing z, € B,(z.) with r = min(R, ) , we have

[Tt — | < 3w — 3] <0 < (%)nﬂr

and it follows as in the proof of Theorem 3.2 by induction that x, — z.. The
g-quadratic convergence follows from (3).



