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Node equations.

Pipe equations.

Compressor constraints.

Figure 1: The Transco National Transmission System

1 Introduction

What is nonlinear programming?

Nonlinear (constrained) optimisation ≡ nonlinear programming:

min
x∈RN

f(x) subject to cE(x) = 0 and cI(x) ≥ 0

where f : RN −→ R is the objective function, cE : RN −→ RMe (Me ≤ N) are the equality
constraints and cI : RN −→ RMi are the inequality constraints.

1.1 An example

Optimisation of a high-pressure gas network (Fig. 1). A collaboration between British Gas
(Transco), Oxford University and Rutherford Appleton Laboratory (RAL), courtesy of Nick
Gould (RAL).

(a) Node Equations.
q1 + q2 − q3 − d1 = 0

where qi are flows on Pipe i and dj the demands at Node j (Fig. 1 (top right)).

This is an example of general (linear) equality constraints

Aq− d = 0
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with A linear, sparse and structured.

(b) Pipe Equations.
p2

2 − p2
1 + k1q

2.8359
1 = 0

where pi are pressures, qi are flows and ki are constants.
This is an example of general (non-linear) equality constraints

A(p) + diag(kig(qi)) = 0

with A non-linear, sparse, structured.

(c) Compressor Constraints.

q1 − q2 + z1 · c1(p1, q1, p2, q2) ≥ 0

where pi are pressures, qi are flows, zi are 0–1 variables (= 1 if machine is on) and ci are
nonlinear functions.
This is an example of general inequality constraints

Aq + diag(zi) c(p,q) ≥ 0

with c non-linear, A sparse, structured and including 0–1 variables.

(d) Other Constraints. Bounds on pressures and flows

pmin ≤ p ≤ pmax

qmin ≤ q ≤ qmax

In general: Simple bounds on variables.

(e) Choice of objective function f(x). Many possible objectives:

• maximize / minimize sum of pressures
• minimize compressor fuel cost
• minimize supply

+ combinations of these

Actual Data. British Gas National Transmission System

• 199 nodes

• 196 pipes

• 21 compressors

Leading to a steady state problem with ∼ 400 variables.

For a 24-hour variable-demand problem with 10 minute discretization this would immediately
go up to ∼ 58,000 variables !

Challenge: Solve this in real time!

This problem is typical of real-world, large-scale applications and the motivation for the
course:
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• linear constraints

• nonlinear constraints

• simple bounds

• structure

• integer variables

• global minimum “required”

• discretization

Example 1.1 (Data Fitting). An experiment is described by the nonlinear relation y =
F (p, x), where F : RP × RKI → RKO , x ∈ RKI describes the condition under which the
experiment is conducted (inputs), and y ∈ RKO is the outcome of the experiment (observations
or outputs). The vector p contains a set of parameters which are unknown and which need to
be determined. Upon repeating the experiment M times, we obtain M data pairs (xi, yi)

M
i=1 ⊂

RKI × RKO . To estimate the parameter vector p we minimize

M∑
i=1

|F (p, xi)− yi|2

with respect to the unknown p ∈ RP . This is an example of a nonlinear least squares problem (as
opposed to a linear least squares problem where p 7→ F (p, x) is linear). To prevent over-fitting,
we may add a regularizing or penalty term R(p) to the objective function, where R : RP → R+.

1.2 Other examples (not taught)

Example 1.2 (Optimal Luggage Size). An airline imposes size restrictions on the luggage
passengers may take on board: Luggage must be rectangular, must not exceed 150cm in any
spatial direction, and the surface occupied when it is placed on any side must not exceed
2000cm2.

Let x1, x2, x3 denote the height, length, and width of a piece of luggage. To maximise its
volume under the stated constraints, we need to solve the following optimization problem:

min
(x1,x2,x3)∈R3

− x1x2x3

s.t. x2
1 + x2

2 + x2
3 ≤ 1502

xi ≥ 0, i ∈ {1, 2, 3}
xixj ≤ 2000, i 6= j ∈ {1, 2, 3}.
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Example 1.3 (Finite Deformation Elasticity).

(a) The energy of an elastic body with reference configuration Ω ⊂ R3 and deformation y ∈
C1(Ω;R3) is described by

E(y) =

∫
Ω

W (∇y(x)) dx

On a portion Γ of the boundary ∂Ω, a discplacement y0 is applied. To find the steady state
of the body, we are required to minimize E(y) over all deformations y which satisfy y = y0

on Γ.

(b) Suppose the elastic body is lying on a rigid, flat surface spanning the plane {x3 = 0}. Under
the action of gravity, the total energy of the body becomes I(y) = E(y) − g

∫
Ω
y3(x) dx.

Thus, to find the stead state, we need to minimize I(y) over all deformations y satisfying
y3(x) ≥ 0 for all x ∈ Ω.

Other Application Areas:

• Minimum energy problems

• Structural design problems

• Traffic equilibrium models

• Production scheduling problems

• Portfolio selection

• Parameter determination in financial markets

• Hydro-electric power scheduling

• Gas production models

• Efficient models of alternative energy sources

• Computer tomography (image reconstruction)

• 3D reconstruction (computer vision)

• Image denoising

• Optimal control & PDE constrained optimization

• Back propagation in neural networks



2 PRELIMINARIES 5

1.3 Mathematical problem statement

Let f : RN → R be the (smooth) objective function. Furthermore, we assume throughout that
the admissible (or feasible) set Ω is given by

Ω =
{
x ∈ RN : cj(x) = 0, j ∈ E , cj(x) ≥ 0, j ∈ I

}
,

where c : RN → RMe+Mi , E = {1, . . . ,Me} and I = {Me + 1, . . . ,Me + Mi}. A point x ∈ Ω is
called feasible or admissible.

A global minimizer of f in Ω (or simply, a global minimizer) is a point x∗ ∈ Ω such that

f(x∗) ≤ f(x) ∀x ∈ Ω. (1)

A point x∗ ∈ Ω is a local minimizer of f in Ω (or simply, a local minimizer) if there exists
r > 0 such that

f(x∗) ≤ f(x) ∀x ∈ Ω ∩Br(x∗). (2)

A point x∗ ∈ Ω is a strict local minimizer of f in Ω (or simply, a strict local minimizer) if
there exists r > 0 such that

f(x∗) < f(x) ∀x ∈ (Ω ∩Br(x∗)) \ {x∗}. (3)

We will typically seek local minimizers since, for non-convex optimisation problems, it is
unrealistic to expect that one can find a global minimizer.

2 Preliminaries

2.1 Linear algebra primer

Elements of the vector space RN are usually denoted x, y, z with components x = (xj)
N
j=1. The

space is equipped with the Euclidean inner product (the “dot-product”)

x · y = xTy =
N∑
j=1

xjyj,

and with the Euclidean norm

|x| =
(

N∑
j=1

|xj|2
)1/2

= (x · x)1/2.

If we want to distinguish this norm from other norms, we will write | · | = | · |2.
Two of the most important inequalities for Euclidean spaces are the Cauchy Inequality

x · y ≤ 1
2
|x|2 + 1

2
|y|2, (4)

and the Cauchy–Schwarz Inequality
x · y ≤ |x||y|, (5)

with equality if, and only if, x is a multiple of y.
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Exercise.

(a) Prove Cauchy’s Inequality (4). [Hint: First prove it for N = 1 then generalize.]

(b) Show that (4) implies (5). [Hint: First prove it for |x| = |y| = 1, then generalize.]

(c) Use (5) to prove the Triangle Inequality

|x+ y| ≤ |x|+ |y| .

Open and closed balls in RN are denoted

Br(x) = {x′ ∈ RN : |x− x′| < r} and B̄r(x) = {x′ ∈ RN : |x− x′| ≤ r}.

A linear mapping L : RN → RM can always be represented by a matrix-vector operation
L(x) = Ax, where A ∈ RM×N . We shall therefore never distinguish the two points of view.
The operator-norm of a matrix A ∈ RM×N is given by

‖A‖ = max
x∈RN

|x|=1

|Ax|.

Exercise. Show that ‖ · ‖ is a norm on the space of M ×N matrices RM×N .

A matrix A ∈ RN×N is called invertible if the map x 7→ Ax is 1-1 and onto, and is otherwise
called singular.

Lemma 2.1 (Perturbation Theorem). Let S, T ∈ RN×N and let T be invertible. If
‖T − S‖ < 1/‖T−1‖, then S is invertible with S−1 =

∑∞
n=0[T−1(T − S)]nT−1 and

‖S−1‖ ≤ ‖T−1‖
1− ‖T−1‖‖T − S‖ .

Proof. Let A ∈ RN×N with ‖A‖ < 1. Then, ‖An‖ ≤ ‖A‖n n→∞−−−→ 0 and so

(I − A)(I + A+ A2 + . . .+ An) = I − An+1 n→∞−−−→ I .

Thus,

(I − A)−1 =
∞∑
n=0

An

and

‖(I − A)−1‖ ≤
∞∑
n=0

‖A‖n =
1

1− ‖A‖ .

Now, let A = T−1(T − S). Then, ‖A‖ ≤ ‖T−1‖‖T − S‖ < 1, by assumption. Hence,

S−1T = (I − T−1(T − S))−1 =
∞∑
n=0

(T−1(T − S))n



2 PRELIMINARIES 7

and
‖S−1‖ ≤ ‖S−1T‖‖T−1‖ ≤ ‖T−1‖

1− ‖T−1‖‖T − S‖ .

The condition number of an invertible matrix A is denoted

κ(A) = ‖A‖‖A−1‖.

If A is not invertible then κ(A) = +∞.

Exercise. Let A be invertible and E such that ‖E‖‖A−1‖ ≤ 1
2
. Furthermore, suppose that

Ax = b and (A+ E)x̃ = b. Show that then

|x− x̃|
|x| ≤ 2κ(A)

‖E‖
‖A‖ .

A matrix A ∈ RN×N is called positive definite (in short, A > 0) if

xTAx > 0, for all x 6= 0.

It is called positive semi-definite (in short, A ≥ 0) if

xTAx ≥ 0, for all x ∈ RN .

Similarly, we define the terms negative (semi-)definite and the respective sets. If a matrix
A is neither positive nor negative semi-definite, we call it indefinite. If a matrix is symmetric
and positive definite, we say it is spd.

Proposition 2.2. If A ∈ RN×N is symmetric then there exist eigenvalues λ1 ≤ · · · ≤ λN ∈ R
and eigenvectors v1, . . . , vN such that

Avn = λnvn, n = 1, . . . , N.

The set {v1, . . . vN} is an orthonormal basis of RN . The set σ(A) := {λ1, . . . , λN} is called the
spectrum of A.

Proof. For Part (a), see Algebra 2A.

Exercise (see handout). Show that the following properties hold:

1. A has the spectral decomposition A = QDQT where D = diag(λ1, . . . , λN) and
Q = (v1| . . . |vN). The matrix Q is orthogonal, i.e., Q−1 = QT and |Qx| = |x|, for all
x. This representation is unique up to a permutation of the columns of D and Q.
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2. A is invertible if, and only if, 0 /∈ σ(A).

3. If A is invertible then σ(A−1) = {1/λ1, . . . , 1/λN} and the eigenvectors are the same.

4. ‖A‖ = maxn≤N |λn| and ‖A−1‖ = 1/minn≤N |λn|. Thus, κ(A) =
maxn≤N |λn|
minn≤N |λn|

.

5. hTAh ≥ minn≤N λn|h|2, for all h ∈ RN . In particular, A is spd if, and only if, λn > 0,
for all n = 1, . . . , N .

6. A is spd if, and only if, A−1 is spd.

7. If A is positive semi-definite, then A1/2 := Qdiag(
√
λ1, . . . ,

√
λN)QT is symmetric

positive semidefinite and satisfies (A1/2)2 = A. In fact, it is the unique symmetric
positive semidefinite matrix that satisfies this. If A Is spd then A1/2 is spd.

Apart from the standard Euclidean norm | · |, we will also use more general Euclidean norms
of the form

|x|B = (xTBx)1/2,

where B ∈ RN×N is a spd matrix.
The associated operator norm of a matrix A ∈ RN×N is

‖A‖B = sup
x∈RN

|x|B=1

|Ax|B.

Exercise. Let A,B ∈ RN×N where A is symmetric and B is spd.

(a) Prove that | · |B is a (vector) norm.

(b) Let ‖ · ‖B be the operator norm with respect to | · |B. Compute ‖A‖B in terms of the
standard operator norm ‖ · ‖ of a related matrix.

2.2 Multi-variable calculus primer

(For more details please refer to the 2nd Year Analysis modules.)

Let U ⊂ RN be an open set and let F : U → RM . We say that F is continuous at x ∈ U if
F (xj) → F (x) whenever xj → x. We say that F is continuous in U (or F ∈ C(U)) if F is
continuous in each point x ∈ U .

Definition 2.3 (Derivatives).

(a) F is (Fréchet-) differentiable at x if there exists a matrix A ∈ RM×N such that

lim
h→0

|F (x+ h)− F (x)− Ah|
|h| = 0. (6)
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We call DF (x) := A the (Fréchet-)derivative of F at x and ∇F (x) := DF (x)T the gradient
of F at x. We say that F is continuously differentiable in U (or F ∈ C1(U)) if DF : U →
RM×N is continous.

(b) Let M = 1. We say f : U → R is twice differentiable at x if f is differentiable at x and if
there exists H ∈ RN×N such that

lim
h→0

|f(x+ h)− f(x)−Df(x)h− 1
2
hTHh|

|h|2 = 0.

We call D2f(x) = ∇2f(x) = H the Hessian of f at x. We say that f ∈ C2(U) if D2f ∈
C(U).

It is convenient and intuitive to think of the (first) derivative as a linear approximation to
F in a neighbourhood of x, i.e.,1

F (x+ h) = F (x) +DF (x)h+ o(|h|).

The second derivative provides a quadratic approximation,

f(x+ h) = f(x) +Df(x)h+ 1
2
hTD2f(x)h+ o(|h|2).

edited
11 FebIf s is a unit vector (|s| = 1), DF (x)s is the rate of change in F at x in the direction s,

DF (x)s =
d

dα
F (x+ αs)

∣∣∣∣
α=0

.

In practice, derivatives are represented by partial derivatives, e.g., for F ∈ C1(RN),

DF (x)ei = ∇F (x) · ei =
∂F

∂xi
(x)

and hence

∇f(x) =

(
∂f

∂x1

(x), . . . ,
∂f

∂xN
(x)

)T
.

end
edit

Exercise. Let f ∈ C2(RN ;R). Show that the Hessian ∇2f(x) is a symmetric matrix with
entries [

∇2f(x)
]
ij

=
∂2f

∂xi∂xj
(x), i, j = 1, . . . , N.

1Here, and throughout, the little-o-notation is used to denote a generic function o : Bε(0)→ RM (where M
should be obvious from the context) which satisfies limx→0 o(x)/x = 0. Similarly, the big-O-notation is used to
denote a generic function O : Bε(0)→ RM which satisfies lim supx→0 |O(x)/x| < +∞.
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Definition 2.4 (Lipschitz-Continuity).

(a) Let U ⊂ RN be open or closed. We say that F : U → RM , is Lipschitz continuous in U if
there exists L ≥ 0 such that

|F (x)− F (x′)| ≤ L|x− x′| for all x, x′ ∈ U.

The smallest such L is denoted LipU(F ), the Lipschitz constant of F in U . We write Lip(F )
if U = RN .

(b) Let U ⊂ RN be open. We say that F is locally Lipschitz continuous in U if F is Lipschitz
continuous in every closed subset of U .

(c) Lipschitz continuity for F : U → RM×N is defined in the same way (simply replacing the
Euclidean norm with the operator norm above).

We finish this section with two important theorems.

Theorem 2.5 (Integral Mean Value Theorem). Let x0 ∈ RN and r > 0. If F : RN → RM

is continuously differentiable on Br(x0) then

F (x′) = F (x) +

[∫ 1

0

DF
(
x+ t(x′ − x)

)
dt

]
(x′ − x) , for all x, x′ ∈ Br(x0) .

Proof. Let φ(t) := F
(
x+ t(x′ − x)

)
. Using the chain rule, we have

φ′i(t) =
d

dt
Fi
(
x+ t(x′ − x)

)
=

N∑
j=1

∂Fi
∂xj

(
x+ t(x′ − x)

)
(x′j − xj)

= ∇Fi
(
x+ t(x′ − x)

)T
(x′ − x) .

So,
φ′(t) = DxF

(
x+ t(x′ − x)

)
(x′ − x)

and

F (x′)− F (x) = φ(1)− φ(0) =

∫ 1

0

φ′(t) dt =

[∫ 1

0

DxF (x+ t(x′ − x)) dt

]
(x′ − x) .

On Problem Sheet 1 you are asked to prove some Taylor formulae of similar type, as well
as the following Contraction Mapping Theorem.

Definition 2.6.

(a) A Lipschitz continous function with LipU(F ) < 1 is called a contraction on U .

(b) Let F : RN → RN . If F (x) = x then x ∈ RN is called a fixpoint of F .
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Theorem 2.7 (Contraction Mapping Theorem). Suppose

(i) G : Br(x0)→ Br(x0), for some x0 ∈ RN and r > 0, and

(ii) there exists 0 ≤ α < 1 such that |G(x′)−G(x)| ≤ α|x′ − x| , for all x, x′ ∈ Br(x0).

Then

(a) The fixpoint iteration xk+1 = G(xk) converges to x∗ ∈ Br(x0), for any x0 ∈ Br(x0).

(b) x∗ is the unique fixpoint of G in Br(x0).

Proof. See Problem Sheet 1.

Note. A sufficient condition for (i) is

|x0 −G(x0)| ≤ (1− α)r . (7)

Exercise. Find the root of F (x) = x− exp(−x).

2.3 Optimality conditions for unconstrained optimisation

Condition (2) for x∗ to be a local minimizer is intuitive, but difficult to verify in practice.
Instead we will use so-called necessary and sufficient optimality conditions.

Proposition 2.8 (Necessary Optimality Conditions). Suppose that f : RN → R and
that x∗ is a local minimizer of f in RN .

(a) If f is differentiable at x∗ then ∇f(x∗) = 0.

(b) If f is twice differentiable at x∗ then ∇2f(x∗) ≥ 0.

Proof. See Problem Sheet 2.

Definition 2.9 (Critical Points). A point x∗ ∈ RN where ∇f(x∗) = 0 is called a first-order
critical point (or simply a critical point).

If, in addition, ∇2f(x∗) ≥ 0 we call x∗ a second-order critical point.

Proposition 2.10 (Sufficient Optimality Conditions). Suppose that f : RN → R is twice
differentiable at x∗, that ∇f(x∗) = 0 and that ∇2f(x∗) > 0. Then, x∗ is a strict local minimizer
of f .

Proof. First note that ∇2f(x∗) > 0 implies that there exists a C0 > 0 such that

hT∇2f(x∗)h ≥ C0|h|2, for all h ∈ RN .

(It follows from Item 5 on the eigenvalue handout that we can choose C0 = minNn=1 λn.)



2 PRELIMINARIES 12

Now, let h 6= 0. Then

f(x∗ + h)− f(x∗) = ∇f(x∗)︸ ︷︷ ︸
=0

·h+ 1
2
hT∇2f(x∗)h+ o(|h|2) ≥ |h|2

(
C0

2
+
o(|h|2)

|h|2
)

Since o(x)/x → 0 as x → 0, there exists a r > 0 such that
∣∣o(|h|2)
|h|2

∣∣ < C0

4
, for all |h|2 ≤ r2.

Hence, setting x = x∗ + h, we get

f(x)− f(x∗) ≥
C0

4
|x− x∗|2 > 0, for all x ∈ Br(x∗)\{x∗} .

edited
19 FebNote that ∇2f(x∗) > 0 is not a necessary condition for x∗ being a local minimizer. For

instance, x∗ = 0 is a local minimizer of f(x) = x4 but f ′′(x∗) = 0. Higher order derivative tests
are possible in theory, but impractical for large scale problems. end

edit

2.4 Convergence rates

All methods we consider in this course will be iterative, i.e., we construct sequences (xn)n∈N
converging to some limit x∗, typically the solution of a minimisation problem. The speed of
convergence has an immediate impact on the cost of the method. To measure the speed of
convergence of sequences, we introduce the notion of convergence rate.

Definition 2.11 (Convergence Rates). Let (xn) ⊂ RN and x∗ ∈ RN .

(i) We say that xn → x∗ with order α > 1 if there exists K ≥ 0 such that |xn+1 − x∗| ≤
K|xn − x∗|α. If α = 2, we say that xn → x∗ quadratically.

(ii) We say that xn → x∗ superlinearly if |xn+1 − x∗|/|xn − x∗| → 0 as n→∞.

(iii) We say that xn → x∗ linearly with convergence factor σ ∈ (0, 1) if |xn+1−x∗| ≤ σ|xn−x∗|.

More precisely, this notion of convergence is called the q-order. The sequences are said to
converge q-quadratically, q-superlinearly and q-linearly with q-factor σ. Weaker notions of
convergence exist, but the q-order will be sufficient for our purposes here.

Example 2.12. Let ρ ∈ (0, 1).

(a) The sequence (ρ, ρ2, ρ3, . . . ) converges to zero linearly with convergence factor ρ.

(b) The sequence (ρ, ρ2, ρ4, ρ8, ρ16, . . . ) converges to zero quadratically.

Example 2.13. Suppose that xn → x∗, that |x0 − x∗| = 1/2 and that we terminate when
|xn − x∗| ≤ 10−10.

• If xn → x∗ linearly with convergence factor σ = 1/2 (which is quite fast), then we would
terminate after 33 iterations.

• If xn → x∗ quadratically with constant K = 1, then only 6 iterations suffice.
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3 Newton’s Method
The typical approach to solve an optimisation problem analytically is to derive the first-order
criticality condition ∇f(x) = 0, to find all its solutions, and then to discard those which are
not (local) minimizers. Therefore, we first consider the following problem:

Given F : RN → RN , find x ∈ RN such that F (x) = 0.

Solving this directly is in general impossible. However, using the interpretation of the deriva-
tive as a linear approximation, we can approximate the nonlinear system F (x) = 0 (locally)
by a linear system.

Starting with an initial guess x0 for a root x∗. If F is continuously differentiable in a
neighbourhood U of x0 that contains x∗, then

0 = F (x∗) = F (x0) +DF (x0)(x∗ − x0) + o(|x∗ − x0|). (8)

Provided |x∗ − x0| is sufficiently small, we can neglect o(|x∗ − x0|) and solve

0 = F (x0) +DF (x0)(x1 − x0)

for x1. Due to (8), we may expect x1 to be closer to x∗ than x0. We can iterate the idea to
obtain a sequence (xn)∞n=0 that (hopefully) converges to x∗.

Algorithm 3.1 (Newton’s Method).
Input: x0 ∈ RN

1: for k = 0, 1, 2, . . . do
2: xk+1 ← xk −DF (xk)

−1F (xk)
3: end for

The two basic assumptions in the motivation of this algorithm were (i) that DF (xk) is
invertible for all k, and (ii) that x0 is sufficiently close to a root x∗. We will now make these
assumptions more precise. The following lemma is essentially a corollary of Lemma 2.1.

Lemma 3.1. Let x∗ ∈ RN and R > 0 such that DF (x) exists and is Lipschitz continuous
in B̄R(x∗). If, furthermore, DF (x∗) is invertible then there exists r > 0 such that DF (x) is
invertible and

‖DF (x)−1‖ ≤ 2‖DF (x∗)
−1‖, for all x ∈ B̄r(x∗).

Proof. Let L,R > 0 be such that F is differentiable in B̄R(x∗) and such that

‖DF (x)−DF (x∗)‖ ≤ L|x− x∗|, for all x ∈ B̄R(x∗) .

Now, we let S = DF (x), T = DF (x∗) and σ := ‖DF (x∗)
−1‖. The Lipschitz condition above

implies that ‖T − S‖ ≤ Lr, for any r ≤ R. Thus, by choosing r = min
(
R, 1

2Lσ

)
we have
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‖T − S‖ ≤ 1
2σ

< 1/‖T−1‖ and we can apply Lemma 2.1. It follows that S = DF (x) is
invertible and

‖DF (x)−1‖ = ‖S−1‖ ≤ σ

1− σ‖T − S‖ ≤
σ

1− 1
2

= 2‖DF (x∗)
−1‖ , for all x ∈ B̄r(x∗).

From Lemma 3.1 it follows that, in the neighbourhood of a root x∗, Newton’s method is
well-defined. We shall now verify that for a sufficiently close initial guess, the iterates produced
by Newton’s Method do not leave this neighbourhood and in fact converge to the root x∗.

Theorem 3.2 (Newton Convergence). Suppose U ⊂ RN is open, F ∈ C1(U ;RN) and DF
is locally Lipschitz continuous in U . Suppose, further, that x∗ ∈ U , F (x∗) = 0 and that DF (x∗)
is invertible. Then, there exists R > 0 such that, for any x0 ∈ B̄R(x∗), Newton’s Method is
well-defined and converges quadratically to x∗.

Proof. There exists r > 0 such that DF is Lipschitz continuous with constant L in B̄r(x∗),
and (due to Lemma 3.1) DF (x) is invertible with ‖DF (x)−1‖ ≤ 2‖DF (x∗)

−1‖ =: 2σ, for any
x ∈ B̄r(x∗).

Suppose that xk ∈ B̄r(x∗), then, by the definition of Newton’s method, we have

DF (xk)(xk+1 − x∗) = DF (xk)(xk − x∗)− F (xk) = DF (xk)(xk − x∗)− (F (xk)− F (x∗)).

Applying Theorem 2.5 (IMVT), we can expand

F (xk)− F (x∗) =

∫ 1

0

d

dt
F (x∗ + t(xk − x∗)) dt =

[∫ 1

0

DF (x∗ + t(xk − x∗)) dt

]
(xk − x∗) .

Note that x∗ + t(xk − x∗) ∈ B̄r(x∗), for all t ∈ [0, 1], so that DF (x∗ + t(xk − x∗)) exists.
Together, these two equations give

DF (xk)(xk+1 − x∗) =

[∫ 1

0

(
DF (xk)−DF (x∗ + t(xk − x∗))

)
dt

]
(xk − x∗).

Hence, multiplying by DF (xk)
−1, taking norms and applying Lemma 3.1, we obtain

|xk+1 − x∗| ≤ ‖DF (xk)
−1‖

∥∥∥∥∫ 1

0

(
DF (xk)−DF (x∗ + t(xk − x∗))

)
dt

∥∥∥∥ |xk − x∗|
≤ 2σ

∫ 1

0

∥∥DF (xk)−DF (x∗ + t(xk − x∗))
∥∥ dt|xk − x∗|

≤ 2σL

∫ 1

0

∣∣(1− t)(xk − x∗)∣∣ dt|xk − x∗| = σL|xk − x∗|2 (9)

In particular, if r ≤ 1/(2Lσ) (cf. proof of Lemma 3.1) then |xk+1− x∗| ≤ 1
2
|xk − x∗|. It follows

by induction that the sequence (xk)k≥0 remains inside B̄r(x∗) provided x0 ∈ B̄r(x∗). Also,

|xk+1 − x∗| ≤ 1
2
|xk − x∗| ≤

(
1
2

)2|xk−1 − x∗| ≤ . . . ≤
(

1
2

)k+1|x0 − x∗|

and so xk → x∗ as k →∞. Due to (9) the convergence is quadratic.
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• There are many alternative convergence proofs with slightly different assumptions.

• If F is differentiable, but DF (x∗) is singular, Newton’s Method still converges typically,
but only linearly (cf. Problem Sheet 2).

• Newton’s Method is not globally convergent. See Problem Sheet 2 for an example.

It remains to describe suitable termination criteria for Newton’s method. Since termination
is generally more an art than a science, we shall only give examples and not go into too much
detail.

1. Step length. This is the most common termination criterion. Note that, under the
assumptions of Theorem 3.2, |xn+1 − x∗| = O(|xn − x∗|2). Hence,

|xn+1 − xn| = |xn − x∗|+O(|xn − x∗|2).

and we could terminate the method as soon as |xn+1−xn| falls below a certain tolerance.

Problem:We may prematurely terminate the iteration even if xn is not close to a regular
root, or if the root is singular.

2. Residual norm: We could terminate Newton’s method as soon as |F (xn)| falls below a
prescribed tolerance.

Problem: Again premature termination. For example, if F (x) = ex, then the algorithm
will terminate without recognising that there is in fact no root.

3. In practice, one usually uses a combination of 1 and 2.
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4 Line Search Methods
Although, in terms of its local convergence rate, Newton’s method leaves nothing to wish for,
globally it is far from an ideal method:

• it may converge slowly or not at all if the starting guess is not good;

• it may converge to local maxima or saddle points;

• it requires explicit knowledge of the derivative of F .

A possible solution for the first two issues is to formulate algorithms which ensure that the
objective function decays in each iteration. There are two classes of algorithms we shall cover:

• line search methods – computing at each step a descent direction and carrying out a
1D search along this direction to find a new iterate with lower objective function;

• trust region methods – building at each step a quadratic model of the objective
function and minimising this model in a neighbourhood of the current iterate.

4.1 The basic steepest descent algorithm

Definition 4.1. Let f ∈ C1(RN ;R) and x ∈ RN . A direction s ∈ RN is a descent direction
for f at x, if

∇f(x) · s = lim
t↘0

f(x+ ts)− f(x)

t
< 0.

The direction of steepest descent is obtained by minimizing the slope ∇f(x) · s over all s
with |s| = 1: Find ŝ ∈ RN with |ŝ| = 1 such that

∇f(x) · ŝ ≤ ∇f(x) · s for all s ∈ RN , |s| = 1. (10)

Proposition 4.2.

ŝ = − ∇f(x)

|∇f(x)| .

Proof. Let s ∈ RN with |s| = 1. Then, using the Cauchy–Schwarz Inequality (5),

∇f(x) · ŝ =− |∇f(x)| = −|∇f(x)|| − s| ≤ ∇f(x) · s.

Exercise. When is the Newton direction s = − [∇2f(x)]
−1∇f(x) a descent direction? Is

∇2f(x) > 0 a necessary/sufficient condition?
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Proposition 4.2 motivates the choice s = −∇f(x) 6= 0 (if x is not yet a minimum). If
we take a small step in this direction, then the objective function will decrease strictly. More
precisely,

f(x+ αs) = f(x)− α|∇f(x)|2 + o(α). (11)

Hence, for α sufficiently small, we have f(x+ αs) < f(x).

Unfortunately, monotonicity of f(xn) is not sufficient to obtain convergence (in general).
Instead, we shall impose the slightly stronger sufficient descent condition (or Armijo condition)

f(x+ αs) ≤ f(x) + θsdα∇f(x) · s, (12)

where θsd ∈ (0, 1) is a user-defined parameter (typically very small, e.g. θsd = 10−3).

However, for faster convergence we would like to take as big steps as possible. The following
backtracking line search method takes small steps only if required to satisfy (12).

Algorithm 4.1 (LINESEARCH).
Input: x, s ∈ RN such that ∇f(x) · s < 0, θsd ∈ (0, 1);
Output: α > 0 s.t. (12) is satisfied
1: α← 1;
2: while f(x+ αs) > f(x) + θsdα∇f(x) · s do
3: α← α/2;
4: end while
5: return α;

Generalising (11) to

f(x+ αs) = f(x) + α∇f(x) · s+ o(α),

it follows immediately that the while loop in Algorithm 4.1 terminates for sufficiently small α
(cf. proof of Theorem 4.3 below). There are many different and more sophisticated linesearch
algorithms (see Section 6.4 for an example).

Algorithm 4.2 (Basic Steepest Descent).
Input: x0 ∈ RN , θsd ∈ (0, 1)
1: for n = 0, 1, 2, . . . do
2: sn ← −∇f(xn);
3: αn ← LINESEARCH[x = xn, s = sn, θsd];
4: xn+1 ← xn − αn∇f(xn);
5: end for
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Theorem 4.3 (Global Convergence of Steepest Descent). Suppose that f ∈ C1(RN ;R)
is bounded below and that ∇f is globally Lipschitz continuous.

(a) For any θsd ∈ (0, 1) and x0 ∈ RN ,

∞∑
n=0

|∇f(xn)|2 < +∞. (13)

(b) If, in addition, f is coercive, that is, lim|x|→∞ f(x) = +∞, then there exists a convergent
subsequence xnk

→ x∗ with ∇f(x∗) = 0.

Proof. Since f(xn) is monotonically decreasing and bounded below, there exists f∗ ∈ R
such that f(xn)→ f∗ .

Let L be the Lipschitz constant of ∇f on RN . Due to the backtracking linesearch, (12)
holds with αn from Algorithm 4.1, i.e.

f(xn+1) ≤ f(xn)− θsdαn|∇f(xn)|2,

from which we immediately deduce

θsd

∞∑
n=0

αn|∇f(xn)|2 ≤
∞∑
n=0

f(xn)− f(xn+1) = f(x0)− f∗.

If we can show that the sequence (αn)n≥0 is bounded from below by some α > 0, then

∞∑
n=0

|∇f(xn)|2 ≤ f(x0)− f∗
α θsd

< +∞ ,

and (13) follows.
Let sn = −∇f(xn). Then, for any α ∈ (0, 1],

f(xn + αsn) = f(xn) + α∇f(xn) · sn + α

∫ 1

0

(
∇f(xn + tαsn)−∇f(xn)

)
· sn dt

≤ f(xn)− α|∇f(xn)|2 + α

∫ 1

0

L|tαsn||sn| dt

= f(xn)− α
(

1− αL

2

)
|∇f(xn)|2 (14)

(using Prob. Sheet 1, Q. 2(a), the Cauchy-Schwarz inequality and Lipschitz continuity of ∇f).
In particular, if

1− αL

2
≥ θsd ⇔ α ≤ 2(1− θsd)

L

then the sufficient decrease condition (12) is satisfied and the linesearch terminates. Since, α
is reduced by a factor of 2 in each step, it follows that

αn ≥ α := min

(
1,

1− θsd
L

)
> 0, for all n ≥ 0.
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To prove Part (b), we show first that (xn)n≥0 is bounded. Assume the converse, that is,
there exists a subsequence (xnk

)k≥0 such that |xnk
| → ∞ as k → ∞. Then, f(xnk

) → ∞, as
k →∞. But f(xn) < f(x0) <∞, for all n ∈ N, leading to a contradiction.

Since (xn)n≥0 is bounded, there exists a compact set K ⊂ RN such that (xn)n≥0 ⊂ K.
The existence of a convergent subsequence xnk

→ x∗ with x∗ ∈ K follows from the Bolzano-
Weierstrass Theorem. Moreover, it follows from Part (a) that

∇f(x∗) = lim
k→∞
∇f(xnk

) = 0,

which completes the proof.

Remark 4.4.

(a) It is posible to relax the assumptions that f is bounded from below and that ∇f is global
Lipschitz continuous.

(b) If this accumulation point x∗ in Theorem 4.3 is a strict local minimizer, then xn → x∗ as
n→∞. We skip the proof of this result.

Note that Theorem 4.3 does not adress the rates of convergence. A geometric picture of
the poor performance of Steepest Descent, even for only slightly ill-conditioned problems, is
shown in Figure 2. We will make this observation more precise in a simplified situation.

14 Nicholas I. M. Gould and Sven Leyffer

and thus gives the greatest possible reduction in a first-order model of the objective function for a

step whose length is specified. Global convergence follows immediately from Theorem 2.3.

Theorem 2.4. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for the

iterates generated by the Generic Linesearch Method using the steepest-descent direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.

As we mentioned above, this theorem suggests that steepest descent really is the archetypical

globally convergent method, and in practice many other methods resort to steepest descent when

they run into trouble. However, the method is not scale invariant, as re-scaling variables can lead to

widely different “steepest-descent” directions. Even worse, as we can see in Figure 2.4, convergence
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Figure 2.4: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch steepest-descent method.

may be (and actually almost always is) very slow in theory, while numerically convergence sometimes

does not occur at all as the iteration stagnates. In practice, steepest-descent is all but worthless

in most cases. The figure exhibits quite typical behaviour in which the iterates repeatedly oscillate

16 Nicholas I. M. Gould and Sven Leyffer

Indeed, one can regard such methods as “scaled” steepest descent, but they have the advantage

that they can be made scale invariant for suitable Bk, and crucially, as we see in Figure 2.5, their
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Figure 2.5: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch Newton method.

convergence is often significantly faster than steepest descent. In particular, in the case of the

Newton direction, the Generic Linesearch method will usually converge very rapidly indeed.

Theorem 2.6. Suppose that f ∈ C2 and that H is Lipschitz continuous on IRn. Then suppose

that the iterates generated by the Generic Linesearch Method with αinit = 1 and β < 1
2 , in

which the search direction is chosen to be the Newton direction pk = −H−1
k gk whenever Hk is

positive definite, has a limit point x∗ for which H(x∗) is positive definite. Then

(i) αk = 1 for all sufficiently large k,

(ii) the entire sequence {xk} converges to x∗, and

(iii) the rate is Q-quadratic, i.e, there is a constant κ ≥ 0.

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
2

≤ κ.

Figure 2: Steepest Descent (left) and Newton (right) iterates for the objective function
f(x, y) = 10(y − x2)2 + (x − 1)2 (the Rosenbrock function). Both methods behave similarly
away from the solution, but Newton’s method is significantly more efficient in the final steps.
Without any second derivative information, the steepest descent method oscillates back and
forth between the sides of the “energy valley”.

Proposition 4.5. Suppose that f(x) = 1
2
xTAx, where A is spd and ‖A‖ ≥ 1. Let (xn)n∈N be

the sequence generated by Algorithm 4.2. Then, f(xn)→ 0 q-linearly with q-factor

σsd := 1− 2θsd(1− θsd)
κ(A)

and |xn|A → 0 q-linearly with q-factor σ1/2
sd (where |y|A =

√
yTAy is the energy norm of y).
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Proof. Recall from the proof of Theorem 4.3 that

αn ≥ min

(
1,

1− θsd
L

)
.

Here, the Lipschitz constant for ∇f(x) = Ax is L = ‖A‖. Due to the assumption ‖A‖ ≥ 1, we
have αn ≥ (1− θsd)/‖A‖. Together with the Armijo condition (12) this implies

f(xn+1) ≤ f(xn)− θsdαn|∇f(xn)|2 ≤ f(xn)− θsd(1− θsd)
‖A‖ |Axn|2. (15)

Now,

|Ay|2 = (A1/2y)TA(A1/2y) ≥ λmin(A)|A1/2y|2 =
yTAy

‖A−1‖ =
2f(y)

‖A−1‖
which together with (15) shows that

1
2
|xn|2A = 1

2
xTnAxn = f(xn)→ 0

q-linearly with q-factor σsd = 1 − 2θsd(1 − θsd)/κ(A), and consequently |xn|A → 0 q-linearly
with q-factor σ1/2

sd .

Remark 4.6.

(a) By rescaling the problem, the result is also true for ‖A‖ < 1.

(b) Since |xn| = |A−1/2A1/2xn| ≤ ‖A−1/2‖|xn|A, we see that xn also converges in the standard
Euclidean norm | · |2. This type of convergence is called r-linear convergence.

(b) The result can be generalised easily to other f ∈ C2(RN) with supx∈RN ‖∇2f(x)‖ < +∞ .
The convergence factor then depends on κ(∇2f(x∗)).

4.2 Variable-metric steepest descent

In the preceding section, we have seen that basic Steepest Descent is provably globally conver-
gent, but the local performance can be very poor if κ(∇2f(x∗)) � 1. In this section, we aim
to considerably improve this. First, let us generalise Theorem 4.3.

Theorem 4.7 (Global convergence of general descent methods). Let f ∈ C1(RN ;R)
be bounded below and ∇f be globally Lipschitz continuous. Now, let sn in Algorithm 4.2 be an
arbitrary descent direction at xn.

(a) If there exists a constant δ > 0 such that |sn| ≥ δ|∇f(xn)|, for all n ≥ 0. Then, for any
θsd ∈ (0, 1) and x0 ∈ RN , this generalised steepest descent method satisfies

∞∑
n=0

cos(θn)2 |∇f(xn)|2 < +∞, (16)

where cos(θn) = − ∇f(xn)

|∇f(xn)| ·
sn
|sn|

.
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(b) If θn is bounded away from π/2, uniformly in n, and lim|x|→∞ f(x) = +∞, then there
exists a convergent subsequence xnk

→ x∗ with ∇f(x∗) = 0.

Proof. Skipped, but similar to the proof of Theorem 4.3.

Remark 4.8. The condition |sn| ≥ δ|∇f(xn)| in Theorem 4.7 can be removed, e.g. by changing
Line 1 in Algorithm 4.1 to

1: α← max (1, |∇f(xn)|/|sn|);
The generalisation of Algorithm 4.2 in Theorem 4.7 is only useful if we can provide a simple

method to compute a better descent direction sn.

The problem with sn = −∇f(xn) was not the steepest descent idea itself, but the short step-
lengths, caused by the large local Lipschitz constant L for ∇f (cf. proof of Proposition 4.5).
Recall the Newton direction

sn = −
[
∇2f(xn)

]−1∇f(xn).

Hence, the problem in the steepest descent method was just a bad choice of norm that we
measured distances in. (The size of L depends strongly on the norm, here | · |.)

Let B ∈ RN×N be spd. Instead of minimising ∇f(x) · s over all s ∈ RN with |s| = 1, we
now minimise over all s ∈ RN with |s|B = 1. (Recall |x|B :=

(
xTBx

)1/2, for any B > 0.)

Proposition 4.9. The direction of steepest descent of f at x, with respect to the B-norm, is

ŝ = − B−1∇f(x)

|B−1∇f(x)|B
.

It satisfies
∇f(x) · ŝ ≤ ∇f(x) · s , for all s ∈ RN , |s|B = 1.

Proof. Let s ∈ RN , |s|B = 1. Then, using the Cauchy–Schwarz Inequality for the B-inner
product,

∇f(x) · ŝ = − ∇f(x)TB−1∇f(x)

|B−1∇f(x)|B
= − |B−1∇f(x)|B = −|B−1∇f(x)|B | − s|B ≤ (B−1∇f(x))TBs = ∇f(x) · s.

For maximal flexibility in our choice of descent direction, we allow the norm | · |B to change
at each step of the descent method.
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Algorithm 4.3 (Generalized Steepest Descent Method).
Input: x0, θsd
1: for n = 0, 1, 2, . . . do
2: Choose an spd matrix Bn ∈ RN×N ;
3: sn ← −B−1

n ∇f(xn);
4: αn ← LINESEARCH[x = xn, s = sn, θsd];
5: xn+1 = xn + αnsn
6: end for

Remark 4.10. The more common motivation for Algorithm 4.3 in the optimization literature
is to assume that Bn is an approximation of ∇2f(xn). Then, the quadratic model

mn(x) = f(xn) +∇f(xn) · (x− xn) + 1
2
(x− xn)TBn(x− xn)

can be expected to be a better approximation to f than the linear model. If Bn > 0, then mn

has a unique minimizer
x∗ = xn −B−1

n ∇f(xn) .

So Algorithm 4.3 simply damps the steplengths to achieve global convergence.

Before discussing how to choose Bn, let us discuss the global and local convergence prop-
erties of Algorithm 4.3. First, it is possible to prove a similar global convergence result for
Algorithm 4.3 as for Algorithm 4.2 in Theorem 4.3. In particular, if κ(Bn) ≤ κ < +∞, uni-
formly in n ∈ N, and if the assumptions on f in Theorem 4.3 hold true, then

∞∑
n=0

|∇f(xn)|2
B−1

n
< +∞ ,

for any θsd ∈ (0, 1) and x0 ∈ RN . (We skip this proof. See [4, Thm. 4.12].) As before, if f is
coercive then there exists a convergent subsequence xnk

→ x∗ with ∇f(x∗) = 0.

More interesting is how the local convergence speed changes. As before, we prove this only
for the special case of a quadratic objective function f .

Proposition 4.11. Let A,B ∈ RN×N be spd and such that λmax

(
B−1/2AB−1/2

)
≥ 1. Now,

suppose that f(x) = 1
2
xTAx and that (xn)n∈N is generated by Algorithm 4.3 with Bn = B, for

all n ≥ 0. Then, f(xn)→ 0 q-linearly with q-factor

σgsd := 1− 2θsd(1− θsd)
κ(B−1/2AB−1/2)

and |xn|A → 0 q-linearly with q-factor σ1/2
gsd.

Proof. First recall from Section 2.1 that, for any spd matrix C ∈ RN×N , we have

λmin(C)|y|2 ≤ yTCy ≤ λmax(C)|y|2, for any y ∈ RN ,

and κ(C) = λmax(C)/λmin(C).
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Now, let sn = −B−1∇f(xn). Then, since B−1/2AB−1/2 is spd, using the second inequality
above, we get

sTnAsn =
(
B−1/2∇f(xn)

)T
B−1/2AB−1/2

(
B−1/2∇f(xn)

)
≤ λmax |B−1/2∇f(xn)| = −λmax∇f(xn) · sn , (17)

where λmax is the maximum eigenvalue of B−1/2AB−1/2.
Using Prob. Sheet 1, Q. 2(a)) and the bound in (17), we have, for any α ∈ (0, 1],

f(xn + αsn) = f(xn) + α∇f(xn) · sn +

∫ 1

0

(
∇f(xn + tαsn)−∇f(xn)

)
· (αsn) dt

= f(xn) + α∇f(xn) · sn + α

∫ 1

0

(xn + tαsn − xn)TAsn dt

≤ f(xn) + α

(
1− αλmax

2

)
∇f(xn) · sn (18)

Thus, the sufficient decrease condition (12) is satisfied and the linesearch terminates, if α
satisfies (

1− αλmax

2

)
≥ θsd ⇔ α ≤ 2(1− θsd)

λmax

Since α is reduced by a factor 2 in each step of backtracking line search and since we assumed
λmax ≥ 1, it follows that

αn ≥
1− θsd
λmax

, for all n ≥ 0. (19)

In the same way as in (17), we can also show that

−∇f(xn) · sn = xTnAB
−1Axn = (A1/2xn)TA1/2B−1A1/2(A1/2xn) ≥ λmin |A1/2xn|2︸ ︷︷ ︸

= 2f(xn)

,

where λmin is the minimum eigenvalue of A1/2B−1A1/2. Substituting this bound into (18) and
using the bound on αn in (19), we get

f(xn+1) ≤
(

1− 2θsd(1− θsd)
λmin

λmax

)
f(xn) .

The result follows since the matrices A1/2B−1A1/2 and B−1/2AB−1/2 have the same eigen-
values. Indeed, for any eigenpair (λ, z) of A1/2B−1A1/2, we have(

B−1/2AB−1/2
) (
B−1/2A1/2

)
z =

(
B−1/2A1/2

) (
A1/2B−1A1/2

)
z = λ

(
B−1/2A1/2

)
z

and thus, (λ,B−1/2A1/2z) is an eigenpair of B−1/2AB−1/2.

Proposition 4.11 indicates that if κ(B−1/2AB−1/2) � κ(A) then the q-factor can be sig-
nificantly lowered by this “preconditioning” process, leading to a much faster convergence of
Algorithm 4.3. In particular, if B = ∇2f(x) = A (Newton) then κ(B−1/2AB−1/2) = 1. The
result can again be generalised to other f ∈ C2(RN) with supx∈RN κ(∇2f(x)) < +∞.
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Wish list for the choice of Bn:

(B.1) Bn must be spd to guarantee that | · |Bn is a norm and that sn = −B−1
n ∇f(xn) is a

descent direction, i.e.

∇f(xn) · sn = −∇f(xn)TB−1
n ∇f(xn) < 0.

(B.2) Ideally Bn ≈ ∇2f(xn) to mimic Newton’s method, or more generally, to achieve
moderate κ(B

−1/2
n ∇2f(xn)B

−1/2
n ).

(B.3) The matrix-vector products Bnx and B−1
n x should be cheap.

Common choices:

1. Newton’s Method: The choice Bn = ∇2f(xn) is only possible in rare cases, e.g. globally
convex f . But whenever possible, it should be used. The line-search aspect then leads to
global convergence (locally quadratic).

2. User-defined Metric Bn, e.g. using analytical insight, such that κ(B
−1/2
n ∇2f(xn)B

−1/2
n )

is moderate for all n.

3. Damped Newton (the Levenberg–Marquardt Method): Choose Bn = ∇2f(xn) +µnE with
E spd and µn ≥ 0 (the Levenberg–Marquardt parameter) adjusted so that Bn is spd.
The matrix E should again be chosen by the user such that κ(E−1/2∇2f(x)E−1/2) is
moderate for all x (but it can also be E = I for simplicity).

If eventually µn = 0, for n ≥ n0, then it reduces to Newton’s method and therefore ex-
hibits locally quadratic convergence. Typically, one chooses µn ↘ 0 leading to superlinear
convergence.

4. Quasi-Newton Methods: In practice it is often difficult, expensive or impossible to com-
pute and invert the Hessian∇2f(xn) at every step. Instead, one can use quantities already
computed in the optimisation process to approximate ∇2f(xn) (see Section 6).
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5 Trust Region Methods

Idea:

1. In each iteration, replace the objective function f(x) by a quadratic model mn(x).

2. Choose a neighbourhood Rn of xn where mn is trusted to approximate f well.

3. Find xn+1 by (approximately) minimising mn over the trust region Rn:

xn+1 ≈ argmin
x∈Rn

mn(x) (20)

Note that the trust region subproblem (20) is a contrained optimisation problem. Normally (see
below), we do the opposite, i.e. replace a constrained problem by a sequence of unconstrained
ones. Thus, (20) can only be solved efficiently if Rn is very simple.

To recover the local convergence speed of Newton’s method, we use a quadratic model:

mn(x) = f(xn) +∇f(xn) · (x− xn) + 1
2
(x− xn)THn(x− xn),

where Hn ∈ RN×N is symmetric (and should approximate the Hessian ∇2f(xn)).

IMPORTANT. Since we are minimizing mn over a bounded region Rn, we do not
require anymore that Hn is positive definite (or even invertible) !

The trust region Rn is typically a closed ball in some norm. Here, for simplicity always

Rn = {x ∈ RN : |x− xn| ≤ ∆n} with ∆n > 0,

the trust region radius. It reflects the quality of the model mn and is adjusted at each step.

Algorithm 5.1 (Prototype Trust Region Method).
Input: x0, ∆0

1: for n = 0, 1, 2, . . . do
2: Compute ∇f(xn) and Hn;
3: Approximately solve (20) to obtain candidate x′n+1;
4: Decide whether to accept (xn+1 = x′n+1) or reject (xn+1 = xn) the candidate;
5: Adjust trust region radius to get new radius ∆n+1;
6: end for

Let us now adress each step of the trust region method separately.
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5.1 The Cauchy-point

The most crucial point is how to solve the trust region subproblem. This is still the subject of
ongoing research.

The main objective for the trust region algorithm was to ensure global convergence. Thus,
a simple idea for the (approximate) solution of the trust region subproblem is to ensure that
the method is at least as efficient as basic steepest descent. The Cauchy point is obtained
when basic steepest descent is applied to mn at xn and restricted to Rn. Since mn is quadratic,
we can use exact line search and restrict the search to α ∈

(
0, ∆n

|∇f(xn)|

]
, i.e. the intersection of

the half-line {xn + αsn : α > 0} with Rn.
Let sn = −∇f(xn), then

φ(α) := mn(xn + αsn) = f(xn)− α|∇f(xn)|2 +
α2

2
∇f(xn)THn∇f(xn).

Since φ′(α) = −|∇f(xn)|2 + α∇f(xn)THn∇f(xn), the minimizer of φ(α) over α ∈
(
0, ∆n

|∇f(xn)|

]
is given by

αcn =


∆n

|∇f(xn)| , if ∇f(xn)THn∇f(xn) ≤ |∇f(xn)|3
∆n

,

|∇f(xn)|2
∇f(xn)THn∇f(xn)

, otherwise.

(21)

The Cauchy Point of the trust region subproblem is defined as

xcn = xn − αcn∇f(xn). (22)

All methods discused below will require at least as much reduction of the model as the
Cauchy point. We will see that this guarantees global convergence. For indefinite Hessians, edited

22 Apr∇f(xn)THn∇f(xn) may be ≤ 0, in which case φ′(α) < 0 and Cauchy point is at the boundary.

5.2 Accepting/rejecting updates & trust region radius management

To decide whether a candidate computed in the trust region subproblem is indeed a good
iterate, we compare the decrease in mn with the actual decrease in f :

ρn =
f(xn)− f(x′n+1)

mn(xn)−mn(x′n+1)
. (23)

The ratio ρn between actual reduction and predicted reduction also tells us whether mn is
“trustworthy” in Rn and therefore can be used to adjust the trust region radius ∆n if necessary.

Let ρac ∈ (0, 1/4) and ∆max > 0 be two user-defined parameters. We use the following
heuristics to decide whether to accept the candidate x′n+1 and to adjust the radius ∆n+1:

Accepting/rejecting x′n+1 Radius management

ρn ≥ ρac xn+1 = x′n+1 ρn <
1
4

∆n+1 = 1
4
∆n

ρn < ρac xn+1 = xn ρn >
3
4
and |x′n+1 − xn| = ∆n ∆n+1 = min(2∆n,∆max)

Otherwise ∆n+1 = ∆n

In particular, x′n+1 is always rejected and ∆n+1 always decreased if ρn ≤ 0 (or equivalently if
f(x′n+1) ≥ f(xn)).
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Together with the idea of the Cauchy Point this leads to the basic trust region algorithm:

Algorithm 5.2 (Trust Region Method).
Input: x0, ∆0, ∆max, ρac;
1: for n = 0, 1, 2, . . . do
2: Compute ∇f(xn) and Hn;
3: Compute approximate minimizer x′n+1 of (20) with mn(x′n+1) ≤ mn(xcn);
4: Evaluate ρn in (23);
5: if ρn ≥ ρac then
6: xn+1 ← x′n+1;
7: else
8: xn+1 ← xn;
9: end if

10: if ρn < 1/4 then
11: ∆n+1 ← 1

4
∆n

12: else if ρn > 3
4
and |x′n+1 − xn| = ∆n then

13: ∆n+1 ← min(2∆n,∆max);
14: else
15: ∆n+1 ← ∆n;
16: end if
17: end for

5.3 Global convergence of trust region methods

Before proving convergence, let us establish the fact that x′n+1 is accepted for sufficiently small
trust region radius ∆n. As stated above, we assume that the solution x′n+1 of the trust region
subproblem leads to at least as much reduction in the quadratic model than the Cauchy point,
i.e.

mn(x′n+1) ≤ mn(xcn), for all n ≥ 0. (24)

Lemma 5.1. Let f ∈ C1(RN ;R) and ∇f be Lipschitz continuous with Lipschitz constant L.
Let xn be the nth iterate in Algorithm 5.2. Suppose that ∇f(xn) 6= 0 and that ‖Hn‖ < +∞. If

∆n ≤
3

4

|∇f(xn)|
L+ ‖Hn‖

,

then

(i) αcn = ∆n / |∇f(xn)| and mn(xn)−mn(xcn) ≥ 1
2
∆n|∇f(xn)|;

(ii) if, in addition, (24) holds then ρn ≥ 1/4 and x′n+1 in Algorithm 5.2 is accepted.

Proof. See Problem Sheet 5.

This leads to the following global convergence result.
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Theorem 5.2. Let f ∈ C1(RN ;R) be bounded from below and let ∇f be Lipschitz continuous.
Consider the sequence of iterates (xn)n≥0 that is produced by Algorithm 5.2. If (24) holds and
maxn∈N ‖Hn‖ =: β < +∞ then

lim inf
n→∞

|∇f(xn)| = 0.

Proof. By assumption, there exists M ∈ R such that f(x) ≥ M , for all x ∈ RN . Suppose,
for contradiction, that |∇f(xn)| ≥ ε > 0, for all n ≥ 0. Due to Lemma 5.1, if

∆n ≤
3

4

ε

L+ β
≤ 3

4

|∇f(xn)|
L+ ‖Hn‖

then αcn = ∆n / |∇f(xn)|, ρn ≥ 1
4
, x′n+1 is accepted and ∆n+1 ≥ ∆n. Since ∆n+1 ≥ 1

4
∆n, for all

n ∈ N in Algorithm 5.2, this implies

∆n ≥ min

(
∆0,

3

16

ε

L+ β

)
=: ∆min > 0 , for all n ≥ 0.

Let n ≥ 0 be an index where x′n+1 is accepted. Then ρn ≥ ρac, i.e.

f(xn)− f(xn+1) ≥ ρac(mn(xn)−mn(x′n+1)) ≥ ρac(mn(xn)−mn(xcn)). (25)

Since ∆min / |∇f(xn)| ≤ αcn and since the function α 7→ mn(xn−α∇f(xn)) is strictly decreasing
on [0, αcn], it follows from Lemma 5.1(i) with ∆n = ∆min that

mn(xn)−mn(xcn) ≥ mn(xn)−mn

(
xn −

∆min

|∇fn|
∇fn

)
≥ 1

2
∆min|∇fn|

Substituting this into (25), we conclude that, whenever a guess x′n+1 is accepted,

f(xn)− f(xn+1) ≥ 1
2
ρac∆min|∇f(xn)|.

In particular, if (nk)k≥0 is the subsequence of all those indices n where x′n+1 is accepted then

∞∑
j=0

|∇f(xnj
)| ≤ 2

f(xn0)−M
ρac ∆min

< +∞,

which gives the desired contradiction.
In particular, there exists at least a subsequence of gradients which tend to zero, and thus

the result is established.

5.4 The dogleg method

We have proven global convergence of any trust region algorithm for which the solution x′n+1

of the trust region subproblem satisfies mn(x′n+1) ≤ mn(xcn). For example, taking x′n+1 =
xcn will give a convergent method, however, this would simply result in the steepest descent
method which we know to perform badly for ill-conditioned problems. We need to find a more
sophisticated way of computing x′n+1. The real advantage of the trust region framework is the
ease with which this can be achieved.
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xn xC
n

xU
n

xN
n

Figure 3: The dogleg path.

Ideally, we would like to use the Newton point whenever possible and revert to the Cauchy
point otherwise. The dogleg method is a practical version of this strategy that aims to use
only freely available information. For simplicity, we assume that Hn = ∇2f(xn) and write
∇fn := ∇f(xn), for all n ≥ 0, for the remainder of this section.

Idea:

1. If ∇fTnHn∇fn ≤ 0, we take x′n+1 = xcn = xn −
∆n

|∇fn|
∇fn.

2. If ∇fTnHn∇fn > 0, we attempt to compute the Newton point

xNn := xn −H−1
n ∇fn .

If the solve with Hn fails, we again take x′n+1 = xcn.
(This may only mean that Hn is ill-conditioned rather than singular, but in that case
the Newton direction will likely be a poor choice anyway.)

3. If ∇fTnHn∇fn > 0 and Hn is invertible, then the Newton point xNn and the unidirec-
tional minimizer (along the steepest descent direction)

xUn := xn −
|∇fn|2

∇fTnHn∇fn
∇fn

are well-defined. We take those as nodes in the piecewise linear dogleg path (see Fig. 3)

Γn = {xn + t(xUn − xn) : 0 ≤ t ≤ 1} ∪ {xUn + t(xNn − xUn ) : 0 ≤ t ≤ 1}

and choose x′n+1 to be the minimizer of mn in Rn along this path.

The following lemma is very useful to compute the minimiser along the dogleg path.
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Lemma 5.3. Suppose that ∇fTnHn∇fn > 0 and that Hn is invertible so that xUn and xNn are
both well-defined. If

(xNn − xUn ) · (xUn − xn) > 0, (26)

then the distance from xn is strictly increasing along Γn and the trust region model mn is
strictly decreasing. If (26) is violated and xNn 6= xUn , then Hn is not positive definite.

Proof. Skipped.

[Sketch: It is an easy exercise to show that (26) implies |xUn − xn| < |xNn − xn|. The fact that
the distance is then strictly increasing is a simple geometric exercise. Also, mn is strictly
decreasing along the first “leg” of the dogleg by definition. To show this for the second “leg”,
consider φ(t) := mn(xUn + t(xNn − xUn )) and prove that φ′(t) < 0, for all t ∈ [0, 1]. The final
result can be established via some linear algebra.]

We now have a clear strategy how to approximately solve the trust region subproblem:

x′n+1 =

{
argmin
x∈Γn∩Rn

mn(x), if ∇fTnHn∇fn > 0 and Hn is invertible and (26) holds,

xcn, otherwise.
(27)

On Problem Sheet 5, you are asked to formulate the details of this strategy in a pseudo-code.

With this choice of trust region subproblem solution, the dogleg method automatically
switches from the globally convergent steepest descent method to a quadratically convergent
Newton method, whenever it is convenient. We skip this result.

[Sketch: Since Lemma 5.3 implies mn(x′n+1) ≤ mn(xcn), for all n ≥ 0, the global convergence
follows immediately from Theorem 5.2. To prove locally quadratic convergence, we show that,
for n sufficiently big, we always have ρn ≥ 1

4
and ∆n ≥ 3

4
|xn − x∗|, so that x′n+1 = xNn and the

iteration reduces to Newton’s method.]

There are many alternative methods to find good approximate minimizers of the trust
region subproblem (20). See Nocedal &Wright [3] for some other approaches, such as Steihaug’s
method, which is based on the Conjugate Gradient method.
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6 Quasi-Newton Methods
Let us return to the question of finding a good choice of metric for the variable-metric steepest
descent method from Section 4.2, and discuss a powerful, general, and popular principle for
constructing the matrices Bn ≈ ∇2f(xn), especially for large-scale systems. These will also
provide good approximate Hessians Hn for the trust region method.

6.1 The Dennis–Moré condition for superlinear convergence

Let (Bn)n≥0 be a family of invertible matrices. Let us start by considering the iteration

xn+1 = xn −B−1
n ∇f(xn), for all n ≥ 0. (28)

By revisiting the proof of quadratic convergence of Newton’s method we establish a condition
on Bn that is necessary and sufficient to ensure superlinear convergence of the iteration above.
We write for short ∇fn = ∇f(xn) and ∇2fn = ∇2f(xn) in this section.

Theorem 6.1. Let f ∈ C2(RN ;R) and suppose that x∗ ∈ RN such that ∇f(x∗) = 0 and
∇2f(x∗) > 0. Let (xn)n∈N be as defined in (28), and assume that xn → x∗ as n → ∞. Then
the convergence is superlinear if, and only if, the Dennis–Moré condition

lim
n→∞

|(Bn −∇2fn)sn|
|sn|

= 0, with sn = xn+1 − xn , (29)

is satisfied.
Proof. We prove only the sufficiency of (29) and assume for simplicity that ∇2f(x) is
Lipschitz continuous in BR(x∗) with Lipschitz constant L > 0, for some R > 0.

Recall from Theorem 3.2 that, for n sufficiently large (and thus |xn−x∗| sufficiently small),
the Newton step xNn = xn − (∇2fn)−1∇fn is well-defined,

‖(∇2fn)−1‖ ≤ 2σ and |xNn − x∗| ≤ Lσ|xn − x∗|2.
where σ := ‖∇2f(x∗)

−1‖. Let sn = xn+1 − xn = −B−1
n ∇fn, then

xNn − xn+1 = (xNn − xn)− sn = −(∇2fn)−1∇fn − sn = (∇2fn)−1(Bn −∇2fn)sn.

and so there exists a n1 ∈ N such that, for all n ≥ n1,

|xn+1 − x∗| ≤ |xNn − x∗|+ |xNn − xn+1| ≤ Lσ|xn − x∗|2 + 2σ|(Bn −∇2fn)sn| . (30)

Hence,

|sn| ≤ |xn − x∗|+ |xn+1 − x∗| ≤ |xn − x∗|
(

1 + Lσ|xn − x∗|
)

+ 2σ|(Bn −∇2fn)sn| .

Since xn → x∗ and due to (29), there exists n2 ≥ n1 such that, for all n ≥ n2,

|sn| ≤ 2|xn − x∗|+ 1
2
|sn| ⇐⇒ |sn| ≤ 4|xn − x∗| .

Combining this again with (30), then finally leads to

|xn+1 − x∗|
|xn − x∗|

≤ Lσ|xn − x∗|+ 2σ
|(Bn −∇2fn)sn|
|xn − x∗|

≤ Lσ|xn − x∗|+ 8σ
|(Bn −∇2fn)sn|

|sn|
→ 0,

as n→∞, due to (29) again, i.e. xn → x∗ q-superlinearily.

Note. Importantly, we do not require ‖Bn−∇2fn‖ → 0 for superlinear convergence, only that
the action of Bn in the direction xn+1 − xn decays sufficiently rapidly.



6 QUASI-NEWTON METHODS 32

6.2 The secant condition and quasi-Newton updates
edited
22 AprIn practice we use line search (cf. Section 4.2), i.e.

xn+1 − xn = αnsn =: dn ,

but, provided αn 6= 0, (29) is equivalent to end
edit

lim
n→∞

|(∇2fn −Bn)dn|
|dn|

= 0.

From now on we also denote
yn := ∇fn+1 −∇fn .

Let us now establish a simple condition on Bn to satisfy (29).
Assuming again Lipschitz continuity of∇2f(x) with constant L, it follows from Theorem 2.5

(IMVT) that, for n sufficiently big,

|yn −∇2fndn| = |∇fn+1 −∇fn −∇2fndn| =
∣∣∣∣∫ 1

0

(
∇2f(xn + tdn)−∇2fn

)
dn dt

∣∣∣∣
≤
∫ 1

0

‖∇2f(xn + tdn)−∇2fn‖ dt |dn| ≤
L

2
|dn|2.

Hence, ideally we would like to choose Bn such that Bndn = yn, and then (29) holds.
However, this is difficult to enforce, since then Bn would depend on xn+1. Instead, we

require that the next update Bn+1 satisfies

Bn+1dn = yn. (31)

This condition is called the secant condition. If, in addition, ‖Bn+1 −Bn‖ → 0, then it can be
shown fairly easily that the Dennis–Moré condition (29) holds and the resulting quasi-Newton
(QN) method converges superlinearly.

We will now construct Bn+1 by finding a simple update formula for Bn such that Bn+1 is
symmetric, (31) is satisfied andBn+1−Bn is minimised in a suitable norm. Since (31) constitutes
a single constraint for this minimisation problem, we could search among all symmetric rank-1
perturbations Bn± vvT of Bn. It can be shown that there is in fact only one symmetric rank-1
matrix that satisfies (31), the SR1 update:

Bn+1 = Bn +
(yn −Bndn)(yn −Bndn)T

(yn −Bndn)Tdn
. (32)

The SR1 update has two major shortcomings: (i) it is undefined (or numerically unstable)
when (yn − Bndn)Tdn = 0 (or small) and (ii) Bn > 0 does not necessarily imply Bn+1 > 0
which is problematic in variable-metric line search. It is still very useful within a trust region
framework (not discussed here, see [4, Sec. 6.6] and [3, Sec. 8.2]).

As we will see below (Lemma 6.5), we can enforce Bn > 0 ⇒ Bn+1 > 0, by adding the
curvature condition

yTn dn > 0, for all n ≥ 0. (33)
This can be ensured by a more advanced line search method (see Section 6.4).

Minimising Bn+1 −Bn among all symmetric matrices that satisfy (31) and (33) then leads
to rank-2 update formulae. Different QN methods arise through different choices of the norm.
The two most popular ones are (see [3, Sec. 8.1] for more details):
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Davidon–Fletcher–Powell (DFP) update:

Bn+1 = (I − ρnyndTn )Bn(I − ρndnyTn ) + ρnyny
T
n , where ρn =

1

yTn dn
. (34)

(minimising ‖B −Bn‖W , where ‖ · ‖W denotes a suitably weighted Frobenius norm).

Broyden–Fletcher–Goldfarb–Shanno (BFGS) update:

Bn+1 = Bn −
(Bndn)(Bndn)T

dTnBndn
+
yny

T
n

yTn dn
. (35)

(minimising ‖B−1 −B−1
n ‖W ′ in a suitably weighted, but different, Frobenius norm).

6.3 The Sherman–Morrison–Woodbury formula

In this section, we will present a simple formula that will make it easy to invert the matrices
generated by quasi-Newton updates.

Lemma 6.2 (Sherman–Morrison–Woodbury Formula). Let B ∈ RN×N be invertible,
U, V ∈ RN×M , then B + UV T is invertible if, and only if, I + V TB−1U is invertible, and

(B + UV T )−1 = B−1 −B−1U(I + V TB−1U)−1V TB−1.

Proof. Left as an Exercise.

Example. Let B =

[
1 0
0 2

]
, U =

[
−1
3

]
, V =

[
−2
1

]
. Invert B + UV T =

[
3 −1
−6 5

]
.

1 + V TB−1U = 1 + [−2, 1]

[
1 0
0 1/2

] [
−1
3

]
= 1 + [−2, 1]

[
−1
3/2

]
=

9

2
.

Hence,

(B + UV T )−1 =

[
1 0
0 1/2

]
− 2

9

[
1 0
0 1/2

] [
−1
3

]([
1 0
0 1/2

] [
−2
1

])T

=

[
1 0
0 1/2

]
− 2

9

[
−1
3/2

] [
−2
1/2

]T
=

[
5/9 1/9
2/3 1/3

]
.

Using the SMW formula, the inverses of our quasi-Newton updates can be written using
similarly simple updating formulae.

Example. Suppose Bn is invertible and yTn dn > 0, and let Bn+1 be the BFGS update (35).
Then its inverse is given by

B−1
n+1 = (I − ρndnyTn )B−1

n (I − ρnyndTn ) + ρndnd
T
n . (36)

Note. It is fairly tedious to prove this (even given the formula).

By exchanging Bn and B−1
n as well as yn and dn, we see immediately that the inverse of

the BFGS update takes the form of the DFP update and vice-versa (immediately providing us
also with a formula for the inverse of (34)).
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Figure 4: Geometric interpretation of the Wolfe conditions.

6.4 The Wolfe conditions

For the DFP and the BFGS updates (34) and (35) to be well-defined we require that yTn dn 6= 0.
In fact, if yTn sn > 0 then Bn > 0 ⇒ Bn+1 > 0.

To ensure this, in addition to the sufficient decrease (or Armijo) condition (12), i.e. f(xn +
αnsn) ≤ f(xn) + θsdαn∇fTn sn, we also require that the curvature condition

∇f(xn + αnsn) · sn ≥ θc∇fTn sn (37)

is satisfied, for some θc ∈ (θsd, 1). Together, (12) and (37) are called the Wolfe conditions.
(Intuitively, (37) prevents the linesearch from stopping when significant further progress can
be made, cf. Fig. 4 for a geometric interpretation.) A typical value for θc is 0.9.

Lemma 6.3. Let sn be a descent direction at xn, and let xn+1 = xn +αnsn satisfy (37). Then

yTn dn > 0.

Proof. Note that (37) is equivalent to

yTn dn = (∇fn+1 −∇fn)T (xn+1 − xn) ≥ (θc − 1)αn∇fTn sn .

Since sn is a descent direction and θc < 1, the right-hand side is positive.

Now consider the following practical linesearch algorithm that guarantees the Wolfe conditions.
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Algorithm 6.1 (WLINESEARCH).
Input: x, s s.t.∇f(x)T s < 0, 0 < θsd < θc < 1
Output: α > 0 s.t. (12) and (37) are satisfied
1: α← 1, α← 0, α← 0;
2: while either (12) or (37) fails do
3: if (12) fails then
4: α← α; α← 1

2
(α + α); % Reduce α

5: else if (37) fails then
6: α← α; % Increase α
7: if α = 0 then
8: α← 2α;
9: else

10: α← 1
2
(α + α);

11: end if
12: end if
13: end while
14: return α;

Proposition 6.4. Suppose f ∈ C1(RN ;R) is bounded below. Then Algorithm 6.1 terminates
in a finite number of iterations and returns a steplength α that satisfies (12) and (37).

Proof. Left as an Exercise. (See [4, Problem 6.4] for a proof strategy.)

Note. If θsd < 1/2, then, for n sufficiently large, the steplength αn = 1 satisfies the Wolfe
conditions (12) and (37) and we recover the basic QN iteration in (28).

6.5 The BFGS method

Lemma 6.5. Suppose that Bn = BT
n > 0 and yTn dn > 0. Then Bn+1 obtained via the BFGS

update (35) satisfies Bn+1 = BT
n+1 > 0.

Proof. Left as an Exercise.

Algorithm 6.2 (A Simple BFGS Algorithm).
Input: x0 ∈ RN , B−1

0 ∈ RN×N spd, 0 < θsd < θc < 1;
1: for n = 0, 1, 2, . . . do
2: sn ← −B−1

n ∇fn;
3: αn ← WLINESEARCH[x = xn,s = sn,θsd, θc];
4: xn+1 ← xn + αnsn;
5: dn ← xn+1 − xn; yn ← ∇fn+1 −∇fn;
6: Update B−1

n+1 using (36);
7: end for
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Remark 6.6.

(a) Lemma 6.5 shows that this BFGS method is well-defined.

(b) Algorithm 6.2 reduces the cost of Algorithm 4.3 from O(N3) operations (LU factorisation
of Bn) to O(N2) operations (low-rank matrix update plus matrix multiplication), which
is particularly useful for large-scale systems (N � 1). In fact, if B0 = I (or sparse) and
n � N , by storing dk, yk for all k < n, we do not even have to explicitly form Bn and
can multiply with Bn in O(Nn) operations. (Exercise.)

(c) As stated already, for sufficiently large n, we have αn = 1 and Bn satisfies the Dennis-
Moré condition (29). Thus, it follows from Theorem 6.1 that Algorithm 6.2 converges
locally superlinearly.

(d) The global convergence theory is somewhat incomplete. See [3, Sec. 8.4] for a proof under
fairly strong assumptions.
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7 Optimality Conditions for Constrained Optimisation
Having established a broad and satisfactory theory for unconstrained optimisation, we now turn
to the harder problem of constrained optimisation. We will start by deriving the counterparts
of the optimality conditions in Section 2.3.

7.1 A basic first-order optimality condition

In this section, we will derive and formulate basic first-order optimality conditions which will
then motivate the study of the tangent space and the method of Lagrange multipliers.

Let E = {1, . . . ,Me}, I = {Me + 1, . . . ,M} and Mi = M −Me, and recall from Section 1.3
the general definition of the constrained optimisation problem

min
Ω
f(x) (38)

and of the admissible set

Ω = {x ∈ RN : cj(x) = 0, for j ∈ E , cj(x) ≥ 0, for j ∈ I}
where c1, . . . , cMe are the equality constraints and cMe+1, . . . , cM are the inequality constraints.
For the remainder, we assume that c = (ci)

M
j=1 ∈ C1(RN ;RM).

Definition 7.1 (Tangent Cone). See Figure 5 for an illustration.

(a) Let γ ∈ C2((−ε, ε),RN), for some ε > 0. The path γ is called admissible if γ|(0,ε) ⊂ Ω.

(b) Let x ∈ Ω. The tangent cone TΩ(x) of Ω at x is the set of all vectors d ∈ RN for which
there exists an admissible path2 γ with γ(0) = x and γ′(0) = d.

This quite general definition admits certain pathologies, which we will be careful to exclude in
the following sections. For the time being, however, it provides a first straightforward general-
isation of the first-order optimality conditions in unconstrained optimisation.

Proposition 7.2 (First-order Optimality Condition). Suppose that f ∈ C1(RN ;R), that
c ∈ C1(RN ;RM) and that x∗ is a local minimiser of f in Ω. Then,

∇f(x∗)
Td ≥ 0, for all d ∈ TΩ(x∗). (39)

Proof. Since x∗ is a local minimiser of f in Ω, there exists r > 0 such that

f(x∗) ≤ f(x) ∀x ∈ Ω ∩Br(x∗).

Now, let d ∈ TΩ(x∗) and let γ be an admissible path at x∗ with γ(0) = x∗ and γ′(0) = d. Then,

∃r ∈ (0, ε] : f(γ(t)) ≥ f(γ(0)) = f(x∗), for all t ∈ (0, r).

Since f ∈ C1(RN ;R) and γ ∈ C2((−ε, ε),RN), this implies that

0 ≤ lim
t↘0

f(γ(t))− f(γ(0))

t
=

df(γ(t))

dt

∣∣∣∣
t=0

= ∇f(γ(0))Tγ′(0) = ∇f(x∗)
Td.

2The condition that γ is twice continuously differentiable may be restrictive in some instances, but it is
sufficient for our puposes, as we will discover below. It is not necessary (cf. [3, Ch. 12] where a proof based on
admissible sequences is given).
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Figure 5: Geometric illustration of the tangent cone in three typical cases.

Second-order optimality conditions are a bit more tricky (see Thm. 7.8 below).

7.2 The linearised tangent cone

Unfortunately the optimality condition in (39) is not very useful in practice. Let us start by
giving a more practical characterisation of the tangent cone (excluding some pathologies along
the way).

Let us first define the set of active constraints, the active set, for any x ∈ Ω:

A(x) :=
{
j ∈ E ∪ I : cj(x) = 0

}
.

Obviously, E ⊂ A(x), for all x ∈ Ω. The inactive set is defined as

A′(x) := I \ A(x) =
{
j ∈ I : cj(x) > 0

}
.

Since c is continuous, it follows that A′(x) ⊂ A′(y), for all y in a neighbourhood of x, i.e. we
can simply ignore inactive constraints cj(x) > 0, j ∈ A′(x).

To eliminate certain pathologies (like cusps in Ω) we require a crucial technical condition
which we will employ throughout rest of the course.

Definition 7.3. Suppose c ∈ C1(RN ;RM). We say that the linear independence constraint
qualification (LICQ) holds at a point x if the set {∇cj(x) : j ∈ A(x)} is linearly independent.

The following Lemma provides a characterisation of the tangent cone in terms of the set of
linearised admissible directions.

Lemma 7.4. Let c ∈ C2(RN ;RM) and x ∈ Ω. Then

TΩ(x) ⊂ F(x),

the linearised tangent cone

F(x) :=
{
d ∈ RN : ∇cj(x)Td = 0 ∀j ∈ E and ∇cj(x)Td ≥ 0 ∀j ∈ I ∩ A(x)

}
.

If, the LICQ holds at x, then TΩ(x) = F(x).
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Figure 6: Illustration of Example 7.6.

Proof. We will only prove TΩ(x) ⊂ F(x). For a proof of the reverse inclusion in the case
that LICQ holds, see [4, Lem. 7.5]. It uses the Implicit Function Theorem [4, Thm. 2.5] to
prove the existence of an admissible path, which is why we require that c ∈ C2(RN ;RM).

Let d ∈ TΩ(x) and let γ be an admissible path with γ(0) = x and γ′(0) = d. By definition,
we have γ(t) ∈ Ω, for all t ∈ (0, ε), and thus cj(γ(t)) = 0 and cj(γ(t)) ≥ 0, for j ∈ E and for
j ∈ I, respectively. Also, cj(γ(0)) = cj(x) = 0, for all j ∈ A(x). Hence,

∇cj(x)Td = ∇cj(γ(0))Tγ′(0) =
dcj(γ(t))

dt

∣∣∣∣
t=0

= lim
t↘0

cj(γ(t))− cj(γ(0))

t

{
= 0, j ∈ E ,
≥ 0, j ∈ I ∩ A(x).

In the special case where I = ∅, we can easily deduce the following corollary of Proposition 7.2.

Corollary 7.5. Suppose that f ∈ C1(RN ;R) and c ∈ C2(RN ;RM) with M = Me and Mi = 0
(i.e. Ω only contains equality constraints). Let x∗ be a local minimiser of f in Ω and assume
the LICQ holds at x∗. Then,

∇f(x∗) ∈ span
{
∇cj(x∗) : j ∈ E

}
. (40)

Proof. We have TΩ(x∗) =
{
d ∈ RN : ∇cj(x∗)Td = 0 ∀j ∈ E

}
, due to Lemma 7.4. This

implies that if d ∈ TΩ(x∗) then also −d ∈ TΩ(x∗), and (39) becomes

∇f(x∗)
Td = 0, for all d ∈ TΩ(x∗) .

Due to the LICQ, this is equivalent to ∇f(x∗) ∈ span
{
∇cj : j ∈ E

}
.

Example 7.6. Consider the two-dimensional, linear objective function f(x) = x1 + x2 with
a single equality constraint c1(x) = x2

1 + x2
2 − 2 = 0.
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We can see by inspection that the admissible set for this problem is the circle of radius√
2 centred at the origin (cf. Fig. 6). The unique minimiser x∗ is clearly (−1,−1)T . From any

other point x on the circle, it is easy to find a way to move that stays admissible (i.e. remains
on the circle) while decreasing f .

We also see from Fig. 6 that clearly ∇f(x∗) is parallel to ∇c1(x∗), i.e. there exists a scalar
λ∗ such that ∇f(x∗) = λ∗∇c1(x∗), as predicted in Corollary 7.5.

7.3 The Karush–Kuhn–Tucker conditions

From now on, we assume throughout that x∗ is a local minimiser of f in Ω and that the LICQ
holds at x∗. The simple characterisation of the first-order optimality condition in Corollary 7.5
can be generalised to the case of inequality constraints and leads to the famous Karush–Kuhn–
Tucker (KKT) conditions and to the Lagrange multiplier method.

For example, considering Example 7.6 with inequality constraint −c1 ≥ 0 (i.e. Ω is the inte-
rior of the disk with radius

√
2) we obtain the same minimiser and again ∇f(x∗) = λ∗∇c1(x∗).

But, for inequality constraints, the sign of λ∗ matters; clearly, for c1 ≥ 0 (i.e. Ω is the exterior
of the disk with radius

√
2), x∗ = (−1,−1)T is not a minimiser, even though we still have

∇f(x∗) = λ∗∇c1(x∗).

Theorem 7.7. Let f ∈ C1(RN ;R), c ∈ C2(RN ;RM) and let x∗ be a local minimiser of f in
Ω at which the LICQ holds. Then, there exists λ∗ ∈ RM such that

∇f(x∗) =
M∑
j=1

λ∗,j∇cj(x∗), (41a)

cj(x∗) = 0 j ∈ E (41b)
cj(x∗) ≥ 0 j ∈ I (41c)
λ∗,j ≥ 0 ∀j ∈ I (41d)

λ∗,jcj(x∗) = 0 ∀j ∈ E ∪ I. (41e)

Geometric Interpretation of Theorem 7.7.

• Conditions (41b) and (41c) are obvious.

• The sets Mj := {x ∈ Ω : cj(x) = 0} are hypersurfaces with normals ∇cj(x). These edited
22 Aprnormals must point into the admissible set Ω for active inequality constraints, j ∈ I ∩

A(x∗) (for equality constraints, j ∈ E , the normal may point inwards or outwards). Hence end
edit(41a) and (41d) are simply translating condition (39) that −∇f(x∗) has no component

pointing into the admissible set.

• Finally, (41e) states that, if cj(x∗) > 0 for some j ∈ I (i.e. j ∈ A′(x∗)) then λ∗,j = 0, i.e.,
this constraint is simply irrelevant for the problem (at least in a neighbourhood of x∗).

Proof of Theorem 7.7. As stated above, it is clear that (41b) and (41c) are satisfied. Setting
λ∗,j = 0, for all j ∈ A′(x∗), we can also ensure that (41e) holds.
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Now, we can assume, without loss of generality, that A(x∗) = E ∪ I. Then, the existence
of a λ∗ ∈ RM such that (41a) holds follows from Corollary 7.5.

It only remains to show that λ∗,j ≥ 0, for j ∈ I. Since the LICQ holds at x∗, there exists
a d ∈ TΩ(x∗) such that

∇cj(x∗)Td > 0 and ∇ck(x∗)Td = 0, for k 6= j.

This can, for example, be achieved by an orthogonalisation procedure. Now,

0 ≤ ∇f(x∗)
Td = λ∗,j∇cj(x∗)Td.

Since ∇cj(x∗)Td > 0, this implies λ∗,j ≥ 0.

When no inequality constraints are present, the KKT conditions can be formulated in a very
compact way using the Lagrangian associated with the constrained optimisation problem (38),
i.e. the functional L ∈ C1(RN+M ;R) defined by

L(x, λ) = f(x)−
M∑
j=1

λjcj(x) = f(x)− λT c(x). (42)

In that case, the KKT conditions (41) reduce to solving the nonlinear system

∇x,λL(x, λ) =

(
∇f(x)−∇c(x)λ

−c(x)

)
= 0. (43)

We will return to this in Section 8.
However, the Lagrangian plays an important role in any constrained optimisation problem,

in particular in the definition of second-order optimality conditions.

7.4 Second-order optimality conditions

Any pair (x∗, λ∗) which satisfies the KKT conditions (41) is called a KKT point, the equivalent
of a first-order critical point in the unconstrained case.

Let us now discuss second-order necessary and sufficient optimality conditions to check
whether a KKT point is a local minimiser for (38) or not. For this purpose, we first define, for
any KKT point (x∗, λ∗), the critical cone

C(x∗, λ∗) =
{
d ∈ TΩ(x∗) : λ∗,j∇cj(x∗)Td = 0, for all j ∈ E ∪ I

}
. (44)

Let us discuss C(x∗, λ∗). The conditions on λ∗,j∇cj(x∗)Td in (44), for j ∈ E ∪ A′(x∗), are
in fact irrelevant and do not actually restrict TΩ(x∗). If I = ∅ (i.e. Ω contains only equality
constraints), then C(x∗, λ∗) = TΩ(x∗).

Now, if d ∈ TΩ(x∗)\C(x∗, λ∗), then there exists a j ∈ I∩A(x∗) such that λ∗,j∇cj(x∗)Td > 0.
Since d ∈ F(x∗), it follows from (41a) and (41d) that for any admissible path γ with γ(0) = x∗
and γ′(0) = d we have

df(γ(t))

dt

∣∣∣∣
t=0

= ∇f(x∗)
Td =

M∑
j=1

λ∗,j∇cj(x∗)Td > 0

and so f is strictly increasing along γ.
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If, on the other hand, d ∈ C(x∗, λ∗) and λ∗,j∇cj(x∗)Td = 0, for all j ∈ I ∩ A(x∗), then

∇f(x∗)
Td =

M∑
j=1

λ∗,j∇cj(x∗)Td = 0

and we need second derivative information to decide whether x∗ is a local minimiser of f in Ω.

Theorem 7.8 (Second-order optimality conditions). Suppose that f ∈ C2(RN ;R) and
c ∈ C2(RN ;RM), and let x∗ ∈ Ω where the LICQ holds.

(a) If x∗ is a local minimiser of f in Ω then the KKT conditions (41) are satisfied at x∗ and

dT∇2
xL(x∗, λ∗)d ≥ 0 for all d ∈ C(x∗, λ∗).

where ∇2
xL(x, λ) = ∇2

xf(x)−∑M
j=1 λj∇2

xcj(x).

(b) If the KKT conditions (41) are satisfied at x∗ and

dT∇2
xL(x∗, λ∗)d > 0 for all d ∈ C(x∗, λ∗) \ {0}, (45)

then x∗ is a strict local minimiser of f in Ω.

Proof. Skipped. See [4, Thm. 7.8] for a proof of Part (b).

We will see these conditions in action in a couple of examples in the next section.
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8 The Method of Lagrange Multipliers
For purely equality constrained problems, the reformulation (43) of the KKT conditions (41)
together with the second-order optimality condition (45) in Theorem (7.8) provides a clear
solution recipe, called theMethod of Lagrange Multipliers or Sequential Quadratic Programming
(SQP). We will discuss this in the next subsection.

In the general case, where inequality constraints are present, no such simple method exists.
In essence, one has to distinguish several cases taking each Lagrange multiplier for an inequality
constraint to be either zero or positive. This is called the Active Set Method and will be
described on an example in Section 8.2.

8.1 Equality constraints – sequential quadratic programming

We start by considering the special case of a quadratic objective function f(x) := 1
2
xTHx−gTx

and a set of linear (equality) constraints c(x) := b − Ax, where H ∈ RN×N , A ∈ RM×N with
M ≤ N , b ∈ RM and g ∈ RN . The resulting constrained optimisation problem

min
Ax=b

1
2
xTHx− xTg (46)

is called a quadratic program.
If rank(A) = M and H is positive definite on ker(A), then it can be shown that (46) has a

unique solution and the KKT conditions for (46) can be written (in block matrix form) as(
H −AT
−A 0

) (
x
λ

)
=

(
g
−b

)
, (47)

(cf. Problem Sheet 6).
In the general case, we can solve the nonlinear system ∇x,λL = 0 in (43) via Newton’s

method or any of the other methods described in Sections 3-6.
Suppose that f ∈ C2(RN ;R), c ∈ C2(RN ;RM) (again understood as equality constraints)

and that (x0, λ0) ∈ RN+M is a starting guess that is sufficiently close to a KKT point (x∗, λ∗)
for this problem. Then we can apply Newton’s method to compute a sequence (xn, λn)n≥0 that
converges to (x∗, λ∗) by solving in each step a quadratic program. This method is presented in
Algorithm 8.1.

Algorithm 8.1 (A simple Sequential Quadratic Programming (SQP) iteration).

Input: (x0, λ0) ∈ RN+M

1: for n = 0, 1, 2, . . . do

2: Solve
(
∇2
xL(xn, λn) −∇c(xn)
−∇c(xn)T 0

)
sn = −∇x,λL(xn, λn);

3:
(
xn+1

λn+1

)
←
(
xn
λn

)
+ sn;

4: end for
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Figure 7: Illustration of Example 8.1. The constraint is a (degenerate) hyperbola. The objective
function is a circle. The minima lie at (−1/2,±1/2)T where the two curves are tangent.

Under appropriate conditions on f and c and provided the initial guess (x0, λ0) is sufficiently
close to (x∗, λ∗) this SQP iteration is locally q-quadratically convergent (cf.Problem Sheet 6).

Example 8.1. Consider the equality constrained optimisation problem with objective function
f(x) := x2

1 + x2
2 and constraint c(x) := x2

2 − (x1 + 1)2 = 0 in R2 (cf. Fig. 7). Then

L(x, λ) = x2
1 + x2

2 − λ
(
x2

2 − (x1 + 1)2
)

r := ∇x,λL(x, λ) =

 2x1 + 2λ(x1 + 1)
2x2 − 2λx2

(x1 + 1)2 − x2
2


H :=

(
∇2
xL(x, λ) −∇c(x)
−∇c(x)T 0

)
=

 2(1 + λ) 0 2(x1 + 1)
0 2(1− λ) −2x2

2(x1 + 1) −2x2 0


Applying Algorithm 8.1 with x0 = (0, 1), λ0 = 0, we get r0 = (0, 2, 0)T and the first Newton
system is  2 0 2

0 2 −2
2 −2 0

 s0,1

s0,2

s0,3

 =

 0
−2
0

 .

From the first and third equation, we see immediately that s0,1 = s0,2 = −s0,3. Thus, it follows
from the second equation that s0 = (−1/2,−1/2, 1/2)T and so x1 = (−1/2, 1/2), λ1 = 1/2 and
r0 = (−1/2, 1/2, 0)T . The next Newton system is 3 0 1

0 1 −1
1 −1 0

 s1,1

s1,2

s1,3

 =

 1/2
−1/2

0

 .
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From the third equation we see that s1,1 = s1,2. But adding the first and the second equation,
we deduce that then s1,1 = s1,2 = 0. It follows from the first equation that s1,3 = 1/2. Therefore,
x2 = (−1/2, 1/2), λ2 = 1 which satisfies ∇x,λL(x2, λ2) = 0 and is thus a KKT point. The SQP
method has converged in two iterations.

Let us check that the second order optimality condition holds at (x∗, λ∗) = (x2, λ2). Since
we have only equality constraints and ∇c(x∗) = (1,−1)T ,

C(x∗, λ∗) = F(x∗) = {d ∈ R2 : ∇c(x∗)Td = 0} = {(d1, d1)T : d1 ∈ R}.

Hence,

dT∇2
xL(x∗, λ∗)d =

(
d1

d1

)T (
4 0
0 0

)(
d1

d1

)
= 4d2

1 > 0 ∀d ∈ C(x∗, λ∗)\{0}.

Again we saw how well Newton’s method works (when it works!). Unfortunately it will fail
for starting guesses that are too far away from a minimum.

For example, picking any starting guess with x0,2 = 0 in Example 8.1, we can see that the
second row of the Newton system becomes 2(1−λ0)s0,2 = 0 and so xn,2 = 0, for all n ≥ 1, and
the method does not converge to a KKT point. Thus, in Section 9, we will again address the
question of how to construct a globally convergent scheme.

8.2 Inequality & equality constraints – the active set method

Unfortunately, when I 6= ∅, i.e. for inequality constrained problems, no such simple method ex-
ists. One way to circumvent this problem, especially if the numberMi of inequality constraints
is small, is to consider each case of A(x∗) separately, the active set method, which reduces the
inequality constrained problem to a set of equality constrained ones. We illustrate this method
on an example.

Example 8.2. Consider the objective function f(x) = x3
1 + x2 with equality constraint

c1(x) := x2
1 + 2x2

2− 1 = 0 and inequality constraint c2(x) := x1 ≥ 0 in R2 (cf. Fig. 8). We have

∇f(x) =

(
3x2

1

1

)
, ∇c1(x) =

(
2x1

4x2

)
and ∇c2(x) =

(
1
0

)
,

and the KKT conditions in (41) become:

3x2
1 − 2x1λ1 − λ2 = 0 (i) x1 ≥ 0 (iv)

1− 4x2λ1 = 0 (ii) λ2 ≥ 0 (v)

x2
1 + 2x2

2 − 1 = 0 (iii) λ2x1 = 0 (vi)

(48)

The active set method now looks at the cases A(x∗) = {1} and A(x∗) = {1, 2} separately.
Case A(x∗) = {1}: Then x1 > 0, and so (48-vi) implies λ2 = 0. It follows from (48-ii) that
x2 = (4λ1)−1 and dividing (48-i) by x1, it follows that λ1 = 3

2
x1. Substituting these two

equations into (48-iii) we can deduce that

x4
1 − x2

1 +
1

18
= 0.



8 THE METHOD OF LAGRANGE MULTIPLIERS 46

Figure 8: Illustration of Example 8.2. The equality constraint is an ellipse. The inequality
constraint restricts Ω to the right half plane. The objective function is a cubic which is tangent
at x = (0.243, 0.686)T . This is a local minimum since f(x) grows to the left and right of that
point. The global minimum is at x = (0,−

√
2/2)T , where the inequality constraint becomes

active. The figure on the right visualises f on Ω as a function of angle from −π/2 to π/2. The
two minima a clearly visible.

This can be solved by substituting y = x2
1 to give y = (3 ±

√
7)/6 ≈ 0.059 and 0.941. Due to

(48-iv), we are only interested in the positive roots of y, leaving two possible solutions

x(1) =

(
0.243
0.686

)
and x(2) =

(
0.970
0.172

)
with λ1 > 0 and objective function values f(x(1)) = 0.7003 and f(x(2)) = 1.0845, respectively.

Case A(x∗) = {1, 2}: Then x1 = 0 and (48-iii) implies x2 = ±
√

2/2. Due to (48-i), we have
λ2 = 0. Finally, it follows from (48-ii) that λ1 = (4x2)−1 = ±

√
2/4 and so both points satisfy

all the conditions in (48) – note that constraint c1 is an equality constraint and so λ1 is allowed
to be negative.

Since x2 6= 0, ∇c1 and ∇c2 are linearly independent, so that the LICQ holds in both cases
and we obtain two further KKT points

x(3) =

(
0√
2/2

)
and x(4) =

(
0

−
√

2/2

)
with f(x(3)) =

√
2/2 ≈ 0.707 and f(x(4)) = −

√
2/2 ≈ −0.707, respectively.

Since these four points are the only ones satisfying the KKT conditions, the point with the
smallest objective value, namely x(4), has to be the global minimum of the problem.

To decide whether x(1), . . . , x(3) are local minimisers we need to check the second order
optimality condition (45). First of all, we have

∇2
xL(x, λ) =

(
6x1 − 2λ1 0

0 −4λ1

)
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Now, we need to distinguish the two cases again.

Case A(x∗) = {1}: Recall that here λ2 = 0, x1 > 0, λ1 = 3
2
x1 and x2 = (6x1)−1. Therefore,

the critical cone is

C(x, λ) =

{
d ∈ R2 :

(
2x1

4x2

)T
d = 0

}
=

{
d ∈ R2 : d2 = − x1

2x2

d1

}
and thus, for any d ∈ C(x, λ),

dT∇2
xL(x, λ)d = (6x1 − 2λ1)d2

1 − 4λ1

(
x1

2x2

)2

d2
1 = 3x1d

2
1 − 6x1(3x1)2d2

1 = 3x1(1− 18x4
1)d2

1.

If the RHS is positive at a KKT point, then the second order condition (45) holds and that
point is a local minimiser. If it is negative the point is not a minimiser. (If it is zero, the
second-order condition is also inconclusive.) Since 18(x

(1)
1 )4 = 0.0628 and 18(x

(2)
1 )4 = 15.937,

it follows that x(1) is a local minimiser, while x(2) is not.

Case A(x∗) = {1, 2}: Again λ2 = 0 and x2 6= 0. Therefore, the critical cone is

C(x, λ) =

{
d ∈ R2 :

(
2x1

4x2

)T
d = 0 &

(
1
0

)T
d ≥ 0

}

=

{
d ∈ R2 : d2 = − x1

2x2

d1 & d1 ≥ 0

}
.

In this case, x1 = 0, x2 6= 0 and λ1 = ±
√

2/4. Hence, for any d ∈ C(x, λ),

dT∇2
xL(x, λ)d = (6x1 − 2λ1)d2

1 − 4λ1

(
x1

2x2

)2

d2
1 = −2λ1d

2
1

Since λ(3)
1 =

√
2/4 > 0, x(3) is no local minimiser, and since λ(4)

1 = −
√

2/4 < 0, we can confirm
that the global minimiser x(4) does indeed satisfy the second order condition (45).
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9 Penalty and Augmented Lagrangian Methods
For simplicity, let I = ∅, i.e., Mi = 0 and M = Me. In this case, the KKT conditions simply
become

∇x,λL(x∗, λ∗) = 0. (49)

As mentioned above, Newton’s method, applied to (49) “typically” converges q-quadratically
(cf. Problem Sheet 6). The question is again how to construct a globally convergent scheme.
Unfortunately here, ∇2

x,λL(x∗, λ∗) is intrinsically indefinite, and so steepest descent does not
work directly. Instead, we will aim at replacing the constrained problem (38) by a sequence of
unconstrained problems where violation of the constraint c(x) = 0 is penalised.

9.1 The `2-penalty method

Let us define the merit function

Φ(µ;x) = f(x) +
µ

2

M∑
j=1

|cj(x)|2

and minimise Φ for increasing values of µ, so that in the limit, as µ → ∞, it gives rise to a
solution of the constrained minimisation problem.

Algorithm 9.1 (`2-penalty method).
Input: xS0 ∈ RN , µ0 > 0, τ0 > 0
1: for n = 0, 1, 2, . . . do
2: Use an unconstrained optimisation method with starting guess xSn, compute xn

such that |∇xΦ(µn;xn)| ≤ τn;
3: Choose µn+1, τn+1; xSn+1 ← xn;
4: end for

Typically, the choice of the updated values µn+1 and τn+1 depend on information about “how
difficult” the optimisation problem in Step 2 had been. will enter the updating procedure for
µn and τn. For the moment, we will only assume that µn →∞ and τn → 0.

Since

∇xΦ(µn;xn) = ∇f(xn)−
M∑
j=1

µncj(xn)∇cj(xn),

if we choose
λn = µnc(xn), (50)

we get

∇xΦ(µn;xn) = ∇xL(xn, λn) and c(xn) =
λn
µn
→ 0,

as µn →∞ (provided λn is bounded).

Theorem 9.1. Let f ∈ C1(RN ;R) and c ∈ C2(RN ;RM), and suppose that the sequence
{xn}n≥0 generated by Algorithm 9.1 (with τn → 0 and µn → ∞) converges to a point x∗ at
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which the LICQ holds. Furthermore, let λn be defined by (50). Then, λ∗ := limn→∞ λn exists
and (x∗, λ∗) is a KKT point, i.e., ∇x,λL(x∗, λ∗) = 0.

Proof. Skipped. For a proof, see [4, Thm. 8.1].

Let us discuss (informally) the local convergence properties of Algorithm 9.1 under the as-
sumptions of Theorem 9.1 and assuming in addition that the strong second-order optimality
condition (45) holds.

Taylor expansion around (x∗, λ∗), where ∇x,λL(x∗, λ∗) = 0, gives

∇x,λL(xn, λn) = ∇2
x,λL∗

(
xn − x∗
λn − λ∗

)
+ o

(
|xn − x∗|+ |λn − λ∗|

)
Since ∇2

x,λL∗ is invertible, for n sufficiently big, there exists a constant C independent of n
such that ∣∣∣∣( xn − x∗

λn − λ∗

)∣∣∣∣ ≤ C

∣∣∣∣( ∇xΦ(µn;xn)
c(xn)

)∣∣∣∣ ≤ C

∣∣∣∣( τn
λnµ

−1
n

)∣∣∣∣ ∼ µ−1
n .

This is a slow convergence rate which requires very large values of the penalty parameter
µn for satisfactory accuracies. This, in turn, leads to extremely ill-conditioned unconstrained
optimisation problems in Step 2 that may be difficult and unreliable to solve.

9.2 The augmented Lagrangian approach

A better approach is based on the augmented Lagrangian

LA(µ;x, λ) := L(x, λ) +
µ

2

M∑
j=1

|cj(x)|2.

We essentially replaces Φ by LA in Algorithm 9.1, leaving also λ fixed at each iteration and
updating it subsequently. It is based on the observation that

∇xLA(µ;x∗, λ∗) = ∇xL(x∗, λ∗) + µ∇c(x∗)c(x∗) = 0,

if (x∗, λ∗) is a KKT point, i.e., KKT points are always critical points of LA. More importantly,
the additional penalisation turns x∗ into a local minimiser (rather than a saddle point) of
LA(µ; ·, λ∗), provided µ is sufficiently large.

Proposition 9.2. Suppose that (x∗, λ∗) is a KKT point where the LICQ and the strong
second-order optimality condition (45) hold. Then, there exists µ̄ > 0 such that, for all µ ≥ µ̄,
∇2
xLA(µ;x∗, λ∗) is positive definite and x∗ is a strict local minimiser of LA(µ; ·, λ∗) in RN .

Proof.
It suffices to show that, for µ sufficiently big, ∇2

xLA(µ;x∗, λ∗) is positive definite.
First, note that

∇2
xLA(µ;x∗, λ∗) = ∇2

xL(x∗, λ∗) + µ

M∑
j=1

cj(x∗)∇2cj(x∗) + µ

M∑
j=1

∇cj(x∗)∇cj(x∗)T

= ∇2
xL(x∗, λ∗) + µ∇c(x∗)∇c(x∗)T ,
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and let λmin < 0 and λmax > 0, respectively, denote the minimum and maximum eigenvalue of
∇2
xL∗ := ∇2

xL(x∗, λ∗).
Now, h ∈ C(x∗, λ∗) is equivalent to ∇c(x∗)Th = 0 and so (45) is equivalent to

hT∇2
xLA(x∗, λ∗)h ≥ c0|h|2, for all h ∈ ker∇c(x∗)T (51)

and for some constant c0 > 0, independent of h.
Also, due to LICQ, ∇c(x∗) is full rank and so

hT∇c(x∗)∇c(x∗)Th ≥ c1|h|2, for all h ∈
(
ker∇c(x∗)T

)⊥
,

the orthogonal complement of ker∇c(x∗)T , for some constant c1 > 0. Hence, if λmin < 0 is the
minimum eigenvalue of ∇2

xL(x∗, λ∗), then

hT∇2
xLA(x∗, λ∗)h ≥ (λmin + µc1)|h|2, for all h ∈

(
ker∇c(x∗)T

)⊥
. (52)

Let h ∈ RN . There exist unique h0 ∈ ker∇c(x∗)T and h1 ∈
(
ker∇c(x∗)T

)⊥, such that h =

h0 +h1. Thus, using the Cauchy-Schwarz inequality (4) with u = ε1/2h0 and v = ε−1/2∇2
xL∗h1,

we get
|2hT0∇2

xL∗h1| = 2|uTv| ≤ |u|2 + |v|2 ≤ ε|h0|2 + ε−1λ2
max|h1|2. (53)

Finally, combining this bound with the bounds in (51) and (52), we get

hT∇2
xLA(µ;x∗, λ∗)h = hT0∇2

xL∗h0 + 2hT0∇2
xL∗h1 + hT1∇2

xL∗h1 + µ|∇c(x∗)Th1|2

≥ (c0 − ε)|h0|2 + (µc1 + λmin − ε−1λ2
max)|h1|2.

Hence, setting ε := 1
2
c0, we deduce

hT∇2
xLA(µ;x∗, λ∗)h > 0, for all h 6= 0 and µ > µ :=

2λ2
max

c0c1

− λmin

c1

.

It is clear from Proposition 9.2 that a good update for λ at each step of the augmented
Lagrangian method will be crucial. Note that

∇xLA(µn;xn, λn) = ∇f(x)−
M∑
j=1

[
λn,j − µncj(xn)

]
∇cj(xn).

Hence, a natural choice is
λn+1 = λn − µnc(xn), (54)

which implies

|c(xn)| = |λn − λn+1|
µn

, (55)

leading to a much faster convergence rate than in the `2-penalty method, especially if µn →∞
(but that is not necessary here).
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Algorithm 9.2 (Basic Augmented Lagrangian Algorithm).
Input: xS0 ∈ RN , λ0 ∈ RM , µ0 > 0, τ0 > 0;
1: for n = 0, 1, 2, . . . do
2: Using an unconstrained optimisation method with starting guess xSn, compute xn

such that |∇xLA(µn;xn, λn)| ≤ τn.
3: λn+1 ← λn − µnc(xn);
4: Choose µn+1 and τn+1, and set xSn+1 ← xn;
5: end for

Theorem 9.3. Suppose that f ∈ C1(RN ;R), c ∈ C2(RN ;RM), and that xn generated by
Algorithm 9.2 (with τn → 0 and µn → ∞) converges to a point x∗ at which the LICQ holds.
Then, λn → λ∗ and (x∗, λ∗) is a KKT point.

Let us discuss again the local convergence properties of Algorithm 9.2. The result in Propo-
sition 9.2 is of little practical value, since it assumes that λ∗ is known. The following result
gives conditions on λn under which ∇2

xLA(µn;xn, λn) is positive definite and xn → x∗ (locally)
superlinearly. edited

29 Apr
Theorem 9.4. Suppose that the assumptions of Proposition 9.2 are satisfied at x∗ and λ∗,
and let µ be as chosen in that theorem. If the sequences {xn}n≥0 and {λn}n≥0 generated by
Alg. 9.2 (with τn → 0) converge to x∗ and λ∗, then there exists n0 ∈ N, such that, for all
n ≥ n0 and µn ≥ µ, the matrix ∇2

xLA(µn;xn, λn) is positive definite and the unconstrained
minimisation problem in Step 2 of Algorithm 9.2 has a unique solution xn. Furthermore, there
exists a positive constant C independent of n, such that

|λn+1 − λ∗| ≤ C
|λn − λ∗|

µn
, for all n ≥ n0. (56)

and
|xn − x∗| ≤ C

|λn − λ∗|
µn

, for all n ≥ n0. (57)

end
editWe can draw the following conclusions from this theorem:

• If µn →∞, then it follows from (56) and (57) that λn → λ∗ and xn → x∗ q-superlinearly.

• However, it is not necessary for µn → ∞. It suffices that µn ≥ max(µ, 2C−1), for all
n ≥ n0. Then, λn → λ∗ and xn → x∗ q-linearly.

A very good and popular implementation of the augmented Lagrangian method is the
LANCELOT code by Conn, Gould and Toint (http://www.swmath.org/software/500).
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edited
29 AprRemark 9.5.

(a) A merit function Φ(µ;x) is called exact if there is a positive scalar µ such that for any
µ > µ, all local solutions of the constrained problem are (unconstrained) local minimisers
of Φ(µ;x).

The merit function,
Φ(µ;x) = f(x) +

µ

2
|c(x)|,

is exact and is called the exact `2 function. Note that the penalty term is |c(x)|, not
|c(x)|2 as considered in Section 9.1. Another example is `1 merit function,

Φ(µ;x) = f(x) +
µ

2

M∑
j=1

|cj(x)|.

Both of these are non-differentiable. An example of a smooth and exact merit function
is Fletcher’s augmented Lagrangian [3, Section. 15.4].

(b) Penalty and augmented Lagrangian methods (as well as their theory) can be extended to
non-smooth penalty functions and to inequality constraints. For inequality constraints,
the `2-penalty function would become

Φ(µ;x) = f(x) +
µ

2

(∑
j∈E

|cj(x)|2 +
∑
j∈I

|cj(x)−|2
)
,

where z− = min(0, z).

(c) An alternative approach for purely inequality constrained problems is the (logarithmic)
barrier method (a type of interior point method). The barrier method makes a choice of
merit function where only strictly admissible points have finite merit function value,

P (µ;x) =

{
f(x)− µ∑M

j=1 log cj(x), cj(x) > 0, for all j ∈ I,
+∞, otherwise.

(58)

One of the challenges for this approach is to find an admissible starting point for the
unconstrained optimisation problem at the heart of the algorithm. This is typically done
using primal-dual ideas. If you are interested, see [4, Chapter 9] or [3, Section 17.2] for
details.

end
edit
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10 Large Scale Systems
This chapter will not be examinable. Here are some ideas for further reading.

Conjugate Gradient Methods.

In truely large-scale problems, the Quasi-Newton methods described in Section 6 will also
become too costly to apply. In general, they require storing an N ×N dense approximation of
the Hessian.

An alternative for computing good search directions is based on the conjugate gradient
(CG) method [3, Chapter 5]. For a quadratic objective function

f(x) = 1
2
xTAx− bTx,

we can construct a good search direction sn at the nth iteration by making it conjugate – i.e.,
orthogonal in the A-inner product – to all previous search directions sj, j = 0, . . . , n − 1. In
practice, this can be achieved very efficiently, using only the previous search direction sn−1.

It can be shown that in exact arithmetic the CG method finds the minimum of any quadratic
objective function in at most N iterations. More importantly, in general the convergence is
significantly faster. It depends on the condition number of A and on how “clustered” the
eigenvalues of A are. (See MA30051 for details.)

The conjugate gradient idea can be extended to general nonlinear objective functions:
Fletcher-Reeves Method or Polak-Ribière Method [3, Section 5.2]. To ensure global convergence
(in the general nonlinear case), the CG method can again be combined with line search or
trust region methods. One very popular method for large-scale systems is Steihaug’s Method
[3, Section 4.1]. It combines the CG Method with a dogleg-like trust region approach and a
Quasi Newton approximation of the Hessian.

Inexact and Modified Newton Methods.

Another popular approach for large-scale optimisation problems is the use of inexact Newton
methods [3, Chapter 6]. The Newton system is solved approximately, using an iterative method
for linear systems, such as the CG method or another problem-specific approach. The quadratic
convergence of Newton’s method can be maintained, if the tolerance for the inexact solution
of the Newton system decreases proportionally to |∇f(xn)| (cf. Problem Sheet 5).

If direct solvers are used in conjunction with line search, it is in general necessary to modify
the Hessian to ensure it is positive definite. A popular approach for modifying a Hessian matrix
that is not positive definite is based on a modified Cholesky factorisation. In that approach,
the diagonal elements encountered during the factorisation process are increased if necessary
[3, Section 6.3]. However, several other modified Newton approaches exist.

Nonlinear Least Squares.

An important special class of large-scale nonlinear optimisation problems are least squares
problems, where the objective function takes the special form

f(x) = 1
2

M∑
j=1

R2
j (x),
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and each Rj is a smooth function from RN to R [3, Chapter 10]. This is also a way to combine
multiple objectives.

As discussed on Problem Sheet 3, the gradient and the Hessian of f take a special form
in that case, leading to simplications and particular approximations such as the Gauss-Newton
Hessian or the popular Levenberg-Marquardt Method [3, Section 10.2]. There are strong links
to statistics and inference methods.

Large-Scale Constrained Optimisation

An excellent code for large-scale constrained optimisation that contains the above mentioned
LANCELOT implementation of the augmented Lagrangian method but also interior point
methods and active set methods is the GALAHAD package by Gould, Orban and Toint (avail-
able at http://www.swmath.org/software/1408).
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