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Review of Eigenvalues and Eigenvectors

For any symmetric A ∈ RN×N there exist eigenvalues λ1 ≤ · · · ≤ λN ∈ R and eigenvectors
v1, . . . vN ∈ RN such that

Avn = λnvn, n = 1, . . . , N.

The set {v1, . . . , vN} is an orthonormal basis of RN . We call σ(A) := {λ1, . . . , λN} the spec-
trum of A .

Moreover, we have the following properties:

1. A has the spectral decomposition A = QDQT where D = diag(λ1, . . . , λN) and Q =

(v1| . . . |vN) . The matrix Q is orthogonal, i.e., Q−1 = QT and |Qx| = |x| for all x . This
representation (into an orthogonal and a diagonal matrix) is unique up to a permutation
of the columns of D and Q .

Proof: QDQTvn = λnvn = Avn , ∀n . Since {vn}Nn=1 is a basis, result follows by linearity.

2. A is invertible if, and only if, 0 /∈ σ(A)

Proof: 0 ∈ σ(A) ⇔ ∃v ∈ RN \ {0} s.t. Av = 0v = 0 ⇔ A is not 1-1.

3. If A is invertible then σ(A−1) = {1/λ1, . . . , 1/λN} , and the eigenbasis is the same.

Proof: Avn = λnvn ⇒ vn = λnA
−1vn ⇒ A−1vn = 1

λn
vn , since λn 6= 0 ∀ n .

4. ‖A‖ = maxn=1,...N |λn| and ‖A−1‖ = 1/min |λn| . In particular, κ(A) = max |λn|/min |λn| .

Proof: |Ax| = |QDQTx| = |D(QTx)| ≤ ‖D‖|QTx| = maxn≤N |λn||x| , ∀ x ∈ RN . Equality
is attained for a suitable eigenvector. A similar argument shows the result for ‖A−1‖ .

5. xTAx ≥ minn λn|x|2 , x ∈ RN . In particular, A is spd if, and only if, λn > 0 for all n .

Proof: xTAx = xTQDQTx = (QTx)D(QTx) ≥ minλn|QTx|2 = minλn|x|2 . Equality is
attained if x is an appropriate eigenvector.

6. A is spd if, and only if, A−1 is spd.

Proof: Obvious from 1.

7. If A is positive semi-definite, then
√
A := A1/2 := Qdiag(

√
λ1, . . . ,

√
λN)Q

T is symmetric
and positive semidefinite, and satisfies (A1/2)2 = A . (In fact, it is the unique symmetric
and positive semidefinite matrix which satisfies this.) If A Is spd then A1/2 is spd.

Proof: The first part is obvious, the uniqueness is a little more difficult (but we won’t need
it in this course.)


