MA40050: Numerical Optimisation & Large-Scale Systems

Review of Eigenvalues and Eigenvectors

For any symmetric $A \in \mathbb{R}^{N \times N}$ there exist eigenvalues $\lambda_1 \leq \cdots \leq \lambda_N \in \mathbb{R}$ and eigenvectors $v_1, \ldots v_N \in \mathbb{R}^N$ such that

$$Av_n = \lambda_n v_n, \qquad n = 1, \dots, N.$$

The set $\{v_1,\ldots,v_N\}$ is an orthonormal basis of \mathbb{R}^N . We call $\sigma(A):=\{\lambda_1,\ldots,\lambda_N\}$ the *spectrum* of A.

Moreover, we have the following properties:

1. A has the spectral decomposition $A=QDQ^T$ where $D=\operatorname{diag}(\lambda_1,\ldots,\lambda_N)$ and $Q=(v_1|\ldots|v_N)$. The matrix Q is orthogonal, i.e., $Q^{-1}=Q^T$ and |Qx|=|x| for all x. This representation (into an orthogonal and a diagonal matrix) is unique up to a permutation of the columns of D and Q.

Proof: $QDQ^Tv_n=\lambda_nv_n=Av_n$, $\forall n$. Since $\{v_n\}_{n=1}^N$ is a basis, result follows by linearity.

2. A is invertible if, and only if, $0 \notin \sigma(A)$

Proof: $0 \in \sigma(A) \Leftrightarrow \exists v \in \mathbb{R}^N \setminus \{0\} \text{ s.t. } Av = 0v = 0 \Leftrightarrow A \text{ is not 1-1.}$

3. If A is invertible then $\sigma(A^{-1})=\{1/\lambda_1,\ldots,1/\lambda_N\}$, and the eigenbasis is the same.

Proof: $Av_n = \lambda_n v_n \quad \Rightarrow \quad v_n = \lambda_n A^{-1} v_n \quad \Rightarrow \quad A^{-1} v_n = \frac{1}{\lambda_n} v_n$, since $\lambda_n \neq 0 \ \forall \ n$.

- 4. $\|A\| = \max_{n=1,\dots N} |\lambda_n|$ and $\|A^{-1}\| = 1/\min |\lambda_n|$. In particular, $\kappa(A) = \max |\lambda_n|/\min |\lambda_n|$. Proof: $|Ax| = |QDQ^Tx| = |D(Q^Tx)| \le \|D\||Q^Tx| = \max_{n \le N} |\lambda_n||x|$, $\forall x \in \mathbb{R}^N$. Equality is attained for a suitable eigenvector. A similar argument shows the result for $\|A^{-1}\|$.
- 5. $x^TAx \ge \min_n \lambda_n |x|^2$, $x \in \mathbb{R}^N$. In particular, A is spd if, and only if, $\lambda_n > 0$ for all n. **Proof:** $x^TAx = x^TQDQ^Tx = (Q^Tx)D(Q^Tx) \ge \min \lambda_n |Q^Tx|^2 = \min \lambda_n |x|^2$. Equality is attained if x is an appropriate eigenvector.
- 6. A is spd if, and only if, A^{-1} is spd.

Proof: Obvious from 1.

7. If A is positive semi-definite, then $\sqrt{A}:=A^{1/2}:=Q\mathrm{diag}(\sqrt{\lambda_1},\dots,\sqrt{\lambda_N})Q^T$ is symmetric and positive semidefinite, and satisfies $(A^{1/2})^2=A$. (In fact, it is the unique symmetric and positive semidefinite matrix which satisfies this.) If A is spd then $A^{1/2}$ is spd.

Proof: The first part is obvious, the uniqueness is a little more difficult (but we won't need it in this course.)